Advancements in detecting combustion events through vibration analysis in internal combustion engines: a literature review

dc.contributor.authorZheng, Zengquan
dc.contributor.authorLappas, Petros
dc.contributor.authorShamekhi, Amir-Mohammad
dc.contributor.authorWang, Xu
dc.contributor.authorMikulski, Maciej
dc.contributor.facultyEnergy Technologyen
dc.contributor.facultyEnergiatekniikkafi
dc.contributor.facultyEnergy Technologyen
dc.contributor.facultyEnergiatekniikkafi
dc.contributor.facultyEnergy Technologyen
dc.contributor.facultyEnergiatekniikkafi
dc.contributor.orcidhttps://orcid.org/0000-0002-6232-5156
dc.date.issued2025
dc.description.abstractAccurate combustion characterization is very important for the reliability, efficiency, and emissions of internal combustion engines (ICEs). Standard in-cylinder pressure sensors are costly, obtrusive, and have a short lifespan under harsh environments. This research examines vibration-based analysis as a non-intrusive method for identifying and reconstructing combustion events in compression ignition (CI) and homogeneous charge compression ignition (HCCI) engines. We examine the correlation between engine block vibrations and combustion parameters, including start of combustion (SOC), peak pressure (PP), pressure rise rate (PPRR), maximum heat release rate (HRRmax), and mass fraction burned (MFB), while assessing signal decomposition techniques such as Empirical Mode Decomposition (EMD) and Variational Mode Decomposition (VMD). Advanced signal processing is also combined with machine learning (ML) models to improve real-time estimation and nonlinear mapping. Our study shows that vibration signals can be used as reliable indicators of combustion, with timing precision of less than 1 CAD and pressure reconstruction error of less than 5%. Nonetheless, difficulties persist in adaptive parameter tuning, signal decoupling during transient situations, and the comprehensibility of machine learning models. Hybrid and explainable ML frameworks, multi-sensor data fusion, and the creation of virtual combustion noise sensors for onboard diagnostics are some promising areas of research. In the end, vibration-based combustion analysis provides a cheap and scalable means to get to real-time, non-intrusive monitoring, which will help the shift to cleaner, quieter, and more efficient engines.en
dc.description.notification© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
dc.description.reviewstatusvertaisarvioitufi
dc.identifier.urnURN:NBN:fi-fe20251105105488
dc.language.isoen
dc.publisherElsevier
dc.publisher.countryNETHERLANDS
dc.relation.doihttps://doi.org/10.1016/j.ymssp.2025.113539
dc.relation.ispartofjournalMechanical systems and signal processing
dc.relation.issn1096-1216
dc.relation.issn0888-3270
dc.relation.issn0888-3270
dc.relation.urlhttps://doi.org/10.1016/j.ymssp.2025.113539
dc.relation.urlhttps://urn.fi/URN:NBN:fi-fe20251105105488
dc.relation.volume241
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source.identifierb643fc31-68e8-4577-a205-18e4ae37ece7
dc.source.metadataSoleCRIS
dc.subjectCombustion diagnostics
dc.subjectSource separation
dc.subjectVibration analysis
dc.subjectInternal combustion engine
dc.subject.disciplineEnergy Technologyen
dc.subject.disciplineEnergiatekniikkafi
dc.subject.disciplineEnergy Technologyen
dc.subject.disciplineEnergiatekniikkafi
dc.subject.disciplineEnergy Technologyen
dc.subject.disciplineEnergiatekniikkafi
dc.titleAdvancements in detecting combustion events through vibration analysis in internal combustion engines: a literature review
dc.type.okmA2 Review article in a scientific journal (peer-reviewed)en
dc.type.okmA2 Katsausartikkeli tieteellisessä aikakauslehdessä (vertaisarvioitu)fi
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
nbnfi-fe20251105105488.pdf
Size:
5.08 MB
Format:
Adobe Portable Document Format

Kokoelmat