DC-DFFN: Densely Connected Deep Feature Fusion Network With Sign Agnostic Learning for Implicit Shape Representation

annif.suggestionsmachine learning|neural networks (information technology)|deep learning|learning|optimisation|computer vision|visualisation|modelling (representation)|measurement|three-dimensionality|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p7938|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p1978en
dc.contributor.authorBasher, Abol
dc.contributor.authorBoutellier, Jani
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-6383-493X-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-12T10:48:14Z
dc.date.accessioned2025-06-25T13:02:32Z
dc.date.available2023-10-12T10:48:14Z
dc.date.issued2023-05-11
dc.description.abstractReconstructing 3D surfaces from raw point cloud data is still a challenging and complex problem in computer vision and graphics. Recently emerged neural implicit representations model 3D surfaces implicitly in arbitrary resolution and diverse topologies. In this domain, most of the studies have so far used a single latent code-based variational auto-encoder (VAE) or auto-decoder (AD) architectures, or architectures similar to UNets. Due to the deep architectures of the existing approaches, gradients and/or input information can vanish while passing through the layers, which can cause suboptimal learning at training time and consequently low performance at test time. As a countermeasure, skip connections and feature fusion have been used in related application fields of convolutional neural networks. In this study, we embrace this idea and propose a novel densely connected deep feature fusion network, DC-DFFN, architecture for implicit shape representation. In the experimental results we show that DC-DFFN outperforms baseline approaches in terms visual reconstruction quality and quantitatively based on several measures. In addition, the proposed approach provides faster convergence during training compared to the baseline approaches. The DC-DFFN architecture has been implemented in PyTorch and is available as open source.-
dc.description.notification©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.format.pagerange46399-46412-
dc.identifier.olddbid19148
dc.identifier.oldhandle10024/16347
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1398
dc.identifier.urnURN:NBN:fi-fe20231012139915-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2023.3275442-
dc.relation.funderAcademy of Finland-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2023.3275442-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001010137900001-
dc.source.identifierScopus:85160833092-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16347
dc.subjectConvolutional neural network-
dc.subjectimplicit representation-
dc.subjectdense feature fusion-
dc.subjectzero-label set-
dc.subjectsurface reconstruction-
dc.subjectShapeNet-
dc.subjectD-Faust-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleDC-DFFN: Densely Connected Deep Feature Fusion Network With Sign Agnostic Learning for Implicit Shape Representation-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Basher_Boutellier_2023.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat