Ensemble learning based defect detection of laser sintering

annif.suggestionslaser technology|lasers|quality|3D printing|manufacturing engineering|powder metallurgy|powders|machine learning|defects|manufacturing|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20011|http://www.yso.fi/onto/yso/p1145|http://www.yso.fi/onto/yso/p5029|http://www.yso.fi/onto/yso/p27475|http://www.yso.fi/onto/yso/p22012|http://www.yso.fi/onto/yso/p11979|http://www.yso.fi/onto/yso/p6708|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p543|http://www.yso.fi/onto/yso/p8606en
dc.contributor.authorXin, Junyi
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorUmer, Qasim
dc.contributor.authorTausif, Muhammad
dc.contributor.authorAshraf, M. Waqar
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-02-23T07:39:53Z
dc.date.accessioned2025-06-25T13:12:37Z
dc.date.available2024-02-23T07:39:53Z
dc.date.issued2023-10-30
dc.description.abstractIn rapid development, Selective Laser Sintering (SLS) creates prototypes by processing industrial materials, for example, polymers. Such materials are usually in powder form and fused by a laser beam. The manufacturing quality depends on the interaction between a high-energy laser beam and the powdered material. However, in-homogeneous temperature distribution, unstable laser powder, and inconsistent powder densities can cause defects in the final product, for example, Powder Bed Defects. Such factors can lead to irregularities, for example, warping, distortion, and inadequate powder bed fusion. These irregularities may affect the profitable SLS production. Consequently, detecting powder bed defects requires automation. An ensemble learning-based approach is proposed for detecting defects in SLS powder bed images from this perceptive. The proposed approach first pre-processes the images to reduce the computational complexity. Then, the Convolutional Neural Network (CNN) based ensembled models (off-the-shelf CNN, bagged CNN, and boosted CNN) are implemented and compared. The ensemble learning CNN (bagged and boosted CNN) is good for powder bed detection. The evaluation results indicate that the performance of bagged CNN is significant. It also indicates that preprocessing of the images, mainly cropping to the region of interest, improves the performance of the proposed approach. The training and testing accuracy of the bagged CNN is 96.1% and 95.1%, respectively.-
dc.description.notification© 2023The Authors. IET Optoelectronics published by John Wiley& Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License,which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent11-
dc.format.pagerange273-283-
dc.identifier.olddbid19993
dc.identifier.oldhandle10024/16936
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1705
dc.identifier.urnURN:NBN:fi-fe202402238462-
dc.language.isoeng-
dc.publisherThe Institution of Engineering and Technology-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1049/ote2.12108-
dc.relation.ispartofjournalIET Optoelectronics-
dc.relation.issn1751-8776-
dc.relation.issn1751-8768-
dc.relation.issue6-
dc.relation.urlhttps://doi.org/10.1049/ote2.12108-
dc.relation.volume17-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001093820200001-
dc.source.identifierScopus:85175437988-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16936
dc.subjectlaser beam effects-
dc.subjectlaser beams-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleEnsemble learning based defect detection of laser sintering-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Xin_Faheem_Umer_Tausif_Ashraf_2023.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat