Optimal Robust Positioning Using Factor Graph

annif.suggestionsuniversities|satellite navigation|machine learning|automation|locationing|Vaasa|institutions of higher education|telecommunications technology|artificial intelligence|technical sciences|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p10895|http://www.yso.fi/onto/yso/p19374|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p6230|http://www.yso.fi/onto/yso/p94466|http://www.yso.fi/onto/yso/p1030|http://www.yso.fi/onto/yso/p8944|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p16942en
dc.contributor.authorSiemuri, Akpojoto
dc.contributor.authorAhmadi, Elham
dc.contributor.authorElsanhoury, Mahmoud
dc.contributor.authorSelvan, Kannan
dc.contributor.authorVälisuo, Petri
dc.contributor.authorKuusniemi, Heidi
dc.contributor.authorElmusrati, Mohammed S.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-2644-1985-
dc.contributor.orcidhttps://orcid.org/0000-0002-9195-4613-
dc.contributor.orcidhttps://orcid.org/0000-0001-9157-7611-
dc.contributor.orcidhttps://orcid.org/0000-0002-9566-6408-
dc.contributor.orcidhttps://orcid.org/0000-0002-7551-9531-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-12-04T08:14:16Z
dc.date.accessioned2025-06-25T13:53:03Z
dc.date.available2024-12-04T08:14:16Z
dc.date.issued2024-10-10
dc.description.abstractSmartphone GNSS positioning accuracy is often limited by the use of low-cost antennas and chips, resulting in significant impact of signal degradations due to non-line-of-sight (NLOS) and multipath effects. Traditional techniques, such as extended Kalman filtering (EKF), often struggle to maintain accuracy, especially in urban settings. However, factor graph optimization (FGO) has emerged as a promising solution, demonstrating robust navigation capabilities in urban environments by leveraging multi-epoch GNSS measurements to estimate user positions concurrently. Therefore, we will implement an optimal robust positioning solution using FGO framework in this study. The integration of the Inertial Measurement Unit (IMU) and Global Navigation Satellite System (GNSS) measurements is achieved through an approach that employs the factor graph model. Unlike traditional filtering algorithms, the factor graph framework leverages all preceding measurements for state estimation. This study conducts experiments utilizing the Google Smartphone Decimeter Challenge 2023 dataset as its basis. This research aims to develop an optimal and resilient positioning algorithm by integrating GNSS and IMU through a loosely coupled approach leveraging FGO formulation with directly combining position data from GNSS receivers with the IMU measurements. This method of integration is easily implementable in both hardware and software. We compare this to the use of Kalman Filter/RTS for the same integration process. The Kalman Filter/RTS results gave an accuracy of 2.603 m while the accuracy of FGO implementation was 1.661 m. This research achieved an approximately 56.71% increase in accuracy with the implemented FGO approach.-
dc.description.notification©2024 Author(s). Published by Institute of Navigation.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent7-
dc.format.pagerange2684-2690-
dc.identifier.isbn978-0-936406-39-8-
dc.identifier.olddbid21965
dc.identifier.oldhandle10024/18376
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2921
dc.identifier.urnURN:NBN:fi-fe2024120499419-
dc.language.isoeng-
dc.publisherInstitute of Navigation-
dc.relation.conferenceInternational Technical Meeting of the Satellite Division of The Institute of Navigation-
dc.relation.doi10.33012/2024.19909-
dc.relation.ispartofProceedings of the 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024)-
dc.relation.ispartofseriesProceedings of the Satellite Division's International Technical Meeting-
dc.relation.issn2331-5954-
dc.relation.issn2331-5911-
dc.relation.urlhttps://doi.org/10.33012/2024.19909-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18376
dc.subjectFactor graph optimization-
dc.subjectGNSS positioning-
dc.subjectIMU measurements-
dc.subjectPNT-
dc.subject.disciplinefi=Automaatiotekniikka|en=Automation Technology|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleOptimal Robust Positioning Using Factor Graph-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Siemuri_Ahmadi_Elsanhoury_Selvan_Välisuo_Kuusniemi_Elmusrati_2024.pdf
Size:
753.87 KB
Format:
Adobe Portable Document Format

Kokoelmat