Channel Modeling from FMCW Radar

annif.suggestionsradars|signal processing|modelling (representation)|machine learning|wireless networks|wireless data transmission|radio waves|frequency bands|efficiency (properties)|signals|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p2203|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p5445|http://www.yso.fi/onto/yso/p5743|http://www.yso.fi/onto/yso/p23220|http://www.yso.fi/onto/yso/p8329|http://www.yso.fi/onto/yso/p25766en
dc.contributor.authorNaveed, Haris
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-28T10:55:33Z
dc.date.accessioned2025-06-25T17:57:16Z
dc.date.available2025-05-28T10:55:33Z
dc.date.issued2025-05-16
dc.description.abstractAn effective modeling of wireless communication channels is crucial for emerging technologies such as autonomous transportation and smart infrastructure, specially to ensure robust connectivity, optimize network performance, and enable adaptive communication under varying environmental conditions. In this thesis, a radar data-driven framework for wireless channel modeling using Frequency Modulated Continuous Wave (FMCW) radar, with a primary focus on path loss estimation in a Vehicle-to-Infrastructure (V2I) single-target scenario, is presented. The proposed methodology is based on signal processing techniques for range and velocity estimation for the detection and separation of target and stationary clutter in the V2I singletarget scenario. Cell-Averaging Constant False Alarm Rate (CA-CFAR) is used to minimize the background and improve the detection of objects in the environment. Furthermore, the clustering is applied to organize clutter patterns and extract relevant features. From the processed data, path loss is calculated separately for both the moving object and the surrounding clutter. These path loss profiles are then fitted to empirical Alpha-Beta (AB) and Alpha-Beta-Gamma (ABG) models capturing overall propagation characteristics. The AB model demonstrates superior fitting performance. The proposed modeling framework characterizes the wireless environment effectively with the data available from radar. This provides systematic foundational methodology for future sensing-based propagation models, used in autonomous systems and smart infrastructure applications.-
dc.format.bitstreamtrue
dc.format.extent63-
dc.identifier.olddbid23640
dc.identifier.oldhandle10024/19451
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/12317
dc.identifier.urnURN:NBN:fi-fe2025051646031-
dc.language.isoeng-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19451
dc.subject.degreeprogrammeMaster's Programme in Sustainable and Autonomus Systems (SAS)-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysoradars-
dc.subject.ysosignal processing-
dc.subject.ysoradio waves-
dc.titleChannel Modeling from FMCW Radar-
dc.type.ontasotfi=Diplomityö|en=Master's thesis (M.Sc. (Tech.))|sv=Diplomarbete|-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Uwasa_2025_Naveed_Haris.pdf
Size:
4.53 MB
Format:
Adobe Portable Document Format