Fault detection and classification in overhead transmission lines through comprehensive feature extraction using temporal convolution neural network

annif.suggestionsdefects|transmission of electricity|electrical power networks|machine learning|distribution of electricity|power lines|neural networks (information technology)|signal processing|power transmission networks|errors|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p543|http://www.yso.fi/onto/yso/p19716|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p20336|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p7752|http://www.yso.fi/onto/yso/p148en
dc.contributor.authorTunio, Nadeem Ahmed
dc.contributor.authorHashmani, Ashfaque Ahmed
dc.contributor.authorKhokhar, Suhail
dc.contributor.authorTunio, Mohsin Ali
dc.contributor.authorFaheem, Muhammad
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-30T10:40:18Z
dc.date.accessioned2025-06-25T14:04:28Z
dc.date.available2025-05-30T10:40:18Z
dc.date.issued2024-07-01
dc.description.abstractFaults in transmission lines cause instability of power system and result in degrading end users sophisticated equipment. Therefore, in case of fault and for the quick restoration of problematic phases, reliable and accurate fault detection and classification techniques are required to categorize the faults in a minimum time. In this work, 500 kV transmission line (Jamshoro-New Karachi), Sindh, Pakistan has been modeled in MATLAB. The discrete wavelet transform (DWT) has been used to extract features from the transient current signal for different faults in 500 kV transmission line under various parameters such as fault location, fault inception angle, ground resistance and fault resistance and time series data has been obtained for fault classification. Moreover, the temporal convolutional neural network (TCN) is used for fault classification in 500 kV transmission network due to its robust framework. From simulation results, it is found that faults in 500 kV transmission line are classified with 99.9% accuracy. Furthermore, the simulation results of the TCN model compared to bidirectional long short-term memory (BiLSTM) and Gated Recurrent Unit (GRU) and it has been found that TCN model is capable of classifying faults in 500 kV transmission line with high accuracy due to its ability to handle long receptive field size, less memory requirement and parallel processing due to dilated causal convolutions. Through this work, the meantime to repair of 500 kV transmission line can be reduced.-
dc.description.notification© 2024 The Author(s). Engineering Reports published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided theoriginal work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent24-
dc.identifier.olddbid23911
dc.identifier.oldhandle10024/19643
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3280
dc.identifier.urnURN:NBN:fi-fe2025053056672-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1002/eng2.12950-
dc.relation.ispartofjournalEngineering reports-
dc.relation.issn2577-8196-
dc.relation.issue12-
dc.relation.urlhttps://doi.org/10.1002/eng2.12950-
dc.relation.volume6-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001259075500001-
dc.source.identifier2-s2.0-85197302083-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19643
dc.subjectfault classification; fault detection; temporal convolutional neural network; transmission line-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.titleFault detection and classification in overhead transmission lines through comprehensive feature extraction using temporal convolution neural network-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Tunio_Hashmani_Khokhar_Tunio_Faheem_2024.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format

Kokoelmat