Thermodynamic analysis and performance enhancement of an integrated solar–geothermal polygeneration system using grey wolf optimization and LSTM-based forecasting with Monte Carlo uncertainty analysis : A case study on Tenerife Island

dc.contributor.authorKalan, Ali Shokri
dc.contributor.authorKhuyinrud, Mohammadreza Babaei
dc.contributor.authorJahangiri, Farshad
dc.contributor.authorAhmadi , Ramin
dc.contributor.authorMahboubi, Amir
dc.contributor.authorLü, Xiaoshu
dc.contributor.authorRosen, Marc A.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.contributor.orcidhttps://orcid.org/0000-0003-4006-1396
dc.contributor.orcidhttps://orcid.org/0000-0002-1928-8580
dc.date.accessioned2025-09-01T10:13:28Z
dc.date.issued2025-08-22
dc.description.abstractGlobal warming and fossil fuel supply limitations highlight the need for sustainable energy options. Renewable-based systems provide a path to carbon neutrality but face reliability challenges due to intermittency. This study investigates Tenerife Island's potential for integrating solar and geothermal energy. A novel hybrid system is proposed, combining concentrated solar power, geothermal energy resources, with a system comprised of the following components: a supercritical CO₂ cycle, a lithium bromide-water absorption cooling system, a multi-effect desalination unit, a three-stage organic Rankine cycle and a proton exchange membrane electrolyzer. This system produces electricity, heating, cooling, freshwater, and hydrogen, achieving baseline energy and exergy efficiencies of 62 % and 17, respectively. The system's production rates are 7844 kW power, 4416 kW cooling, 6848 kW heating, 22.6 kg/h hydrogen, and 20.7 m3/h freshwater. Optimization using the grey wolf algorithm enhances the energy efficiency by 21 %, the exergy efficiency by 38 %, and the hydrogen production rate by 18 %. Solar energy forecasting employs direct normal irradiance data (2005–2024) with seq2seq long short-term memory predictions up to 2030. A forward uncertainty analysis using Monte Carlo simulations reveals that cooling capacity, exergy destruction rate, and net power production are most sensitive to fluctuations in direct normal irradiance, with coefficients of variation (CV) ranging from 4.4 % to 4.5 %, while energy and exergy efficiencies exhibit minimal coefficient of variation (CV < 0.1 %).
dc.description.notification© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent25
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/18960
dc.identifier.urnURN:NBN:fi-fe2025090193437
dc.language.isoeng
dc.publisherElsevier
dc.relation.doi10.1016/j.apenergy.2025.126640
dc.relation.funderEuropean Union’s Interreg Aurora
dc.relation.funderCETPartnership
dc.relation.grantnumberCETP-2023-00567
dc.relation.grantnumberCETP-2023-00061
dc.relation.ispartofjournalApplied Energy
dc.relation.issn1872-9118
dc.relation.issn0306-2619
dc.relation.projectid20366468
dc.relation.urlhttps://doi.org/10.1016/j.apenergy.2025.126640
dc.relation.volume401
dc.rightsCC BY 4.0
dc.source.identifier2-s2.0-105013641096
dc.subjectSustainable hybrid renewable
dc.subjectSolar and geothermal
dc.subjectGreen hydrogen production
dc.subjectseq2seq LSTM forecasting
dc.subjectMonte Carlo analysis
dc.subjectGrey wolf optimization
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|
dc.titleThermodynamic analysis and performance enhancement of an integrated solar–geothermal polygeneration system using grey wolf optimization and LSTM-based forecasting with Monte Carlo uncertainty analysis : A case study on Tenerife Island
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kalan_Khuyinrud_Jahangiri_Ahmadi_Mahboubi_Lü_Rosen_2025.pdf
Size:
16.67 MB
Format:
Adobe Portable Document Format

Kokoelmat