Dynamically Reconfigurable Perception using Dataflow Parameterization of Channel Attention

annif.suggestionsmachine learning|deep learning|neural networks (information technology)|artificial intelligence|modelling (representation)|efficiency (properties)|signal processing|applications (computer programmes)|optimisation|measurement|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p8329|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p8456|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p4794en
dc.contributor.authorMa, Yujunrong
dc.contributor.authorNikhal, Kshitij
dc.contributor.authorBoutellier, Jani
dc.contributor.authorRiggan, Benjamin
dc.contributor.authorBhattacharyya, Shuvra S.
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-03-11T10:33:03Z
dc.date.accessioned2025-06-25T14:04:14Z
dc.date.issued2024-04-01
dc.description.abstractDespite the increasing performance of deep learning models for intelligent perception tasks, the size and complex-ity of state-of-the-art models have become increasingly large, which makes them difficult to deploy in resource-constrained edge computing environments. Moreover, the conditions and constraints under which these models operate may be im-possible to fully anticipate at design time, and may undergo significant changes during inference. In this paper, we address these challenges by developing a new parameterized design approach for image-based perception that enables efficient and dynamic reconfiguration of convolutions using channel attention. Compared to switching among sets of multiple complete neural network models, the proposed reconfiguration approach is much more streamlined in terms of resource requirements, while providing a high level of adaptability to handle unpredictable and dynamically-varying operational scenarios. The efficiency and adaptability of the proposed approach are demonstrated on ResNetSO integrated with the Convolutional Block Attention Module (CBAM) concept.-
dc.description.notification©2023 IEEE-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.pagerange747-754-
dc.identifier.isbn979-8-3503-2574-4-
dc.identifier.olddbid22667
dc.identifier.oldhandle10024/18867
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3272
dc.identifier.urnURN:NBN:fi-fe2025031116986-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceAsilomar Conference on Signals, Systems & Computers-
dc.relation.doi10.1109/IEEECONF59524.2023.10476908-
dc.relation.funderAcademy of Finland-
dc.relation.funderU.S. Army-
dc.relation.grantnumber327912 REPEAT-
dc.relation.grantnumber345683 SPHERE-DNA-
dc.relation.grantnumberDAZE-
dc.relation.grantnumberW911NF2120076-
dc.relation.isbn979-8-3503-2575-1-
dc.relation.ispartof2023 57th Asilomar Conference on Signals, Systems, and Computers-
dc.relation.ispartofseriesAsilomar Conference on Signals, Systems, and Computers proceedings-
dc.relation.issn2576-2303-
dc.relation.issn1058-6393-
dc.relation.urlhttps://doi.org/10.1109/IEEECONF59524.2023.10476908-
dc.source.identifier2-s2.0-85190394265-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18867
dc.subjectchannel-attention; dataflow; model pruning-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleDynamically Reconfigurable Perception using Dataflow Parameterization of Channel Attention-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ma_Nikhal_Boutellier_Riggan_Bhattacharyya_2024.pdf
Size:
838.05 KB
Format:
Adobe Portable Document Format

Kokoelmat