A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries
annif.suggestions | renewable energy sources|solar energy|energy policy|wind energy|energy production (process industry)|machine learning|Pakistan|deep learning|sustainable development|water power|en | en |
annif.suggestions | renewable energy sources|solar energy|energy policy|wind energy|energy production (process industry)|machine learning|Pakistan|deep learning|sustainable development|water power|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p2387|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p1212 | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p2387|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p1212 | en |
dc.contributor.author | Yan, Tao | |
dc.contributor.author | Rashid, Javed | |
dc.contributor.author | Saleem, Muhammad Shoaib | |
dc.contributor.author | Ahmad, Sajjad | |
dc.contributor.author | Faheem, Muhammad | |
dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
dc.contributor.orcid | https://orcid.org/0000-0003-4628-4486 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2025-05-26T13:10:06Z | |
dc.date.accessioned | 2025-06-25T14:03:26Z | |
dc.date.available | 2025-05-26T13:10:06Z | |
dc.date.issued | 2024-11-18 | |
dc.description.abstract | Electricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and feedforward neural networks (FNNs). The model promises to improve prediction accuracy. The 1965–2023 dataset covers green energy generation statistics from ten Asian countries. Due to the rising energy supply-demand mismatch, the primary goal is to develop the best model for predicting future power production. The GP-Ensemble deep learning model outperforms individual models (GRU, FNN, and CNN) and alternative approaches such as fully convolutional networks (FCN) and other ensemble models in mean squared error (MSE), mean absolute error (MAE) and root mean squared error (RMSE) metrics. This study enhances our ability to predict green electricity production over time, with MSE of 0.0631, MAE of 0.1754, and RMSE of 0.2383. It may influence laws and enhance energy management. | - |
dc.description.notification | Copyright © 2024 The Authors. Published by Tech Science Press. This work is licensed under a Creative Commons Attribution (BY) 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 24 | - |
dc.format.pagerange | 2685-2708 | - |
dc.identifier.olddbid | 23842 | |
dc.identifier.oldhandle | 10024/19356 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/3252 | |
dc.identifier.urn | URN:NBN:fi-fe2025052654812 | - |
dc.language.iso | eng | - |
dc.publisher | Tech Science Press | - |
dc.relation.doi | 10.32604/cmc.2024.058186 | - |
dc.relation.funder | Academy of Finland | - |
dc.relation.funder | University of Vaasa, Finland | - |
dc.relation.ispartofjournal | Computers, materials & continua | - |
dc.relation.issn | 1546-2226 | - |
dc.relation.issn | 1546-2218 | - |
dc.relation.issue | 2 | - |
dc.relation.url | https://doi.org/10.32604/cmc.2024.058186 | - |
dc.relation.volume | 81 | - |
dc.rights | CC BY 4.0 | - |
dc.source.identifier | WOS:001362448100001 | - |
dc.source.identifier | 2-s2.0-85210183455 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/19356 | |
dc.subject | Green energy; advanced predictive techniques; convolutional neural networks (CNNs); gated recurrent units (GRUs); deep learning for electricity prediction; green-electrical production ensemble technique | - |
dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
dc.title | A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Yan_Rashid_Saleem_Ahmad_Faheem_2024.pdf
- Size:
- 1.85 MB
- Format:
- Adobe Portable Document Format