A Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries

annif.suggestionsrenewable energy sources|solar energy|energy policy|wind energy|energy production (process industry)|machine learning|Pakistan|deep learning|sustainable development|water power|enen
annif.suggestionsrenewable energy sources|solar energy|energy policy|wind energy|energy production (process industry)|machine learning|Pakistan|deep learning|sustainable development|water power|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p2387|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p1212en
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p2387|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p8470|http://www.yso.fi/onto/yso/p1212en
dc.contributor.authorYan, Tao
dc.contributor.authorRashid, Javed
dc.contributor.authorSaleem, Muhammad Shoaib
dc.contributor.authorAhmad, Sajjad
dc.contributor.authorFaheem, Muhammad
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-05-26T13:10:06Z
dc.date.accessioned2025-06-25T14:03:26Z
dc.date.available2025-05-26T13:10:06Z
dc.date.issued2024-11-18
dc.description.abstractElectricity is essential for keeping power networks balanced between supply and demand, especially since it costs a lot to store. The article talks about different deep learning methods that are used to guess how much green energy different Asian countries will produce. The main goal is to make reliable and accurate predictions that can help with the planning of new power plants to meet rising demand. There is a new deep learning model called the Green-electrical Production Ensemble (GP-Ensemble). It combines three types of neural networks: convolutional neural networks (CNNs), gated recurrent units (GRUs), and feedforward neural networks (FNNs). The model promises to improve prediction accuracy. The 1965–2023 dataset covers green energy generation statistics from ten Asian countries. Due to the rising energy supply-demand mismatch, the primary goal is to develop the best model for predicting future power production. The GP-Ensemble deep learning model outperforms individual models (GRU, FNN, and CNN) and alternative approaches such as fully convolutional networks (FCN) and other ensemble models in mean squared error (MSE), mean absolute error (MAE) and root mean squared error (RMSE) metrics. This study enhances our ability to predict green electricity production over time, with MSE of 0.0631, MAE of 0.1754, and RMSE of 0.2383. It may influence laws and enhance energy management.-
dc.description.notificationCopyright © 2024 The Authors. Published by Tech Science Press. This work is licensed under a Creative Commons Attribution (BY) 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent24-
dc.format.pagerange2685-2708-
dc.identifier.olddbid23842
dc.identifier.oldhandle10024/19356
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3252
dc.identifier.urnURN:NBN:fi-fe2025052654812-
dc.language.isoeng-
dc.publisherTech Science Press-
dc.relation.doi10.32604/cmc.2024.058186-
dc.relation.funderAcademy of Finland-
dc.relation.funderUniversity of Vaasa, Finland-
dc.relation.ispartofjournalComputers, materials & continua-
dc.relation.issn1546-2226-
dc.relation.issn1546-2218-
dc.relation.issue2-
dc.relation.urlhttps://doi.org/10.32604/cmc.2024.058186-
dc.relation.volume81-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001362448100001-
dc.source.identifier2-s2.0-85210183455-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19356
dc.subjectGreen energy; advanced predictive techniques; convolutional neural networks (CNNs); gated recurrent units (GRUs); deep learning for electricity prediction; green-electrical production ensemble technique-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleA Hybrid Deep Learning Approach for Green Energy Forecasting in Asian Countries-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Yan_Rashid_Saleem_Ahmad_Faheem_2024.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format

Kokoelmat