Regression Training using Model Parallelism in a Distributed Cloud

annif.suggestionscloud services|machine learning|intelligent agents|architecture|distributed systems|information technology architecture|intelligence and reconnaissance|artificial intelligence|data systems|training|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p24167|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p24489|http://www.yso.fi/onto/yso/p8025|http://www.yso.fi/onto/yso/p21082|http://www.yso.fi/onto/yso/p20655|http://www.yso.fi/onto/yso/p13152|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p3927|http://www.yso.fi/onto/yso/p26412en
dc.contributor.authorReijonen, Joel
dc.contributor.authorOpsenica, Miljenko
dc.contributor.authorMorabito, Roberto
dc.contributor.authorKomu, Miika
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.editorO'Conner, Lisa
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-02-16T06:17:26Z
dc.date.accessioned2025-06-25T12:45:58Z
dc.date.available2021-11-04T01:00:18Z
dc.date.issued2019-11-04
dc.description.abstractMachine learning requires a relevant amount of computational resources and it is usually executed in high-capacity centralized cloud infrastructures (e.g., data centers). In such infrastructures, resources are shared in a scalable manner through instantiation and orchestration of multiple virtualized services. Emerging trends in machine learning are distribution and parallelization of model training, which allows the execution of model training tasks in multiple distributed computational domains, with the aim of reducing the overall training time. A possible drawback in decentralization of machine learning is that performance latency issues may arise when the computation of training is geographically distributed to nodes with long distance from each other. One way to reduce latency is to utilize edge computing infrastructure, i.e., to distribute computation near the origin of the request. As edge resources can be scarce, it is important to orchestrate the model training in a parallelized manner. To this extent, in order to effectively ease the use of parallelization both in centralized and in distributed scenarios, we propose and implement a concept that we refer to Intelligent Agent (IA). An IA is responsible for instantiating and scheduling of the machine learning tasks (e.g., model training), and deriving inferences. In our solution, model training is distributed to multiple IAs in parallel. Each IA is packaged into a Linux container in order to take advantage of container portability across heterogenous deployments and to reuse existing container orchestration tools. We validate our proposal by deploying and instantiating multiple IAs across a distributed cloud environment, where each IA is accounting for a fixed amount of computational resources.-
dc.description.notification© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2021-11-04
dc.embargo.terms2021-11-04
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent7-
dc.format.pagerange741-747-
dc.identifier.isbn978-1-7281-3024-8-
dc.identifier.olddbid13632
dc.identifier.oldhandle10024/12125
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/871
dc.identifier.urnURN:NBN:fi-fe202102164925-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE International Symposium on Dependable, Autonomic and Secure Computing-
dc.relation.doi10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00139-
dc.relation.isbn978-1-7281-3025-5-
dc.relation.ispartof2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)-
dc.relation.urlhttps://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00139-
dc.source.identifierScopus: 85075166650-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12125
dc.subjectBig Data-
dc.subjectIntelligent cloud-
dc.subjectModel parallelism-
dc.subjectRegression training-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysointelligent agents-
dc.titleRegression Training using Model Parallelism in a Distributed Cloud-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Reijonen_Opsenica_Morabito_Komu_Elmusrati_2019.pdf
Size:
953.2 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat