Predicting cryptocurrency defaults

Taylor & Francis
Artikkeli
vertaisarvioitu
Artikkeli
Osuva_Grobys_Sapkota_2020.pdf - Hyväksytty kirjoittajan käsikirjoitus - 1.21 MB

Kuvaus

© 2020 Taylor & Francis Group. This is an Accepted Manuscript of an article published by Taylor & Francis in Applied Economics Letters on 03 May 2020, available online: http://www.tandfonline.com/10.1080/00036846.2020.1752903
We examine all available 146 Proof-of-Work-based cryptocurrencies that started trading prior to the end of 2014 and track their performance until December 2018. We find that about 60% of those cryptocurrencies were eventually in default. The substantial sums of money involved mean those bankruptcies will have an enormous societal impact. Employing cryptocurrency-specific data, we estimate a model based on linear discriminant analysis to predict such defaults. Our model is capable of explaining 87% of cryptocurrency bankruptcies after only one month of trading and could serve as a screening tool for investors keen to boost overall portfolio performance and avoid investing in unreliable cryptocurrencies.

Emojulkaisu

ISBN

ISSN

1466-4283
0003-6846

Aihealue

Kausijulkaisu

Applied Economics|52

OKM-julkaisutyyppi

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä