Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning

annif.suggestionssocial media|machine learning|marketing|pain|customers|artificial intelligence|customer experience|customer relationship management|customer orientation|marketing research|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p5878|http://www.yso.fi/onto/yso/p14193|http://www.yso.fi/onto/yso/p3294|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p24882|http://www.yso.fi/onto/yso/p8530|http://www.yso.fi/onto/yso/p7613|http://www.yso.fi/onto/yso/p13560en
dc.contributor.authorSalminen, Joni
dc.contributor.authorMustak, Mekhail
dc.contributor.authorCorporan, Juan
dc.contributor.authorJung, Soon-gyo
dc.contributor.authorJansen, Bernard J.
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Markkinoinnin ja viestinnän yksikkö|en=School of Marketing and Communication|-
dc.contributor.orcidhttps://orcid.org/0000-0003-3230-0561-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-08-02T07:55:58Z
dc.date.accessioned2025-06-25T12:33:50Z
dc.date.available2022-08-02T07:55:58Z
dc.date.issued2022-06-03
dc.description.abstractArtificial intelligence, particularly machine learning, carries high potential to automatically detect customers’ pain points, which is a particular concern the customer expresses that the company can address. However, unstructured data scattered across social media make detection a nontrivial task. Thus, to help firms gain deeper insights into customers’ pain points, the authors experiment with and evaluate the performance of various machine learning models to automatically detect pain points and pain point types for enhanced customer insights. The data consist of 4.2 million user-generated tweets targeting 20 global brands from five separate industries. Among the models they train, neural networks show the best performance at overall pain point detection, with an accuracy of 85% (F1 score = .80). The best model for detecting five specific pain points was RoBERTa 100 samples using SYNONYM augmentation. This study adds another foundational building block of machine learning research in marketing academia through the application and comparative evaluation of machine learning models for natural language–based content identification and classification. In addition, the authors suggest that firms use pain point profiling, a technique for applying subclasses to the identified pain point messages to gain a deeper understanding of their customers’ concerns.-
dc.description.notification©2022 SAGE Publications. The article is protected by copyright and reuse is restricted to non-commercial and no derivative uses. Users may also download and save a local copy of an article accessed in an institutional repository for the user's personal reference.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent33-
dc.format.pagerange517-539-
dc.identifier.olddbid16705
dc.identifier.oldhandle10024/14460
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/462
dc.identifier.urnURN:NBN:fi-fe2022080252512-
dc.language.isoeng-
dc.publisherSAGE Publications-
dc.relation.doi10.1177/10949968221095556-
dc.relation.funderKoneen Säätiö-
dc.relation.ispartofjournalJournal of Interactive Marketing-
dc.relation.issn1520-6653-
dc.relation.issn1094-9968-
dc.relation.issue3-
dc.relation.urlhttps://doi.org/10.1177/10949968221095556-
dc.relation.volume57-
dc.source.identifierWOS:000823591200001-
dc.source.identifierScopus:85134622349-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14460
dc.subjectAI-
dc.subjectcustomer insight-
dc.subjectpain points-
dc.subjectUGC-
dc.subjectuser-generated content-
dc.subject.disciplinefi=Markkinointi|en=Marketing|-
dc.subject.ysomachine learning-
dc.subject.ysomarketing-
dc.subject.ysoartificial intelligence-
dc.titleDetecting Pain Points from User-Generated Social Media Posts Using Machine Learning-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Salminen_Mustak_Corporan_Jung_Jansen_2022.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat