Evaluation of Machine Learning Models for Smart Grid Parameters: Performance Analysis of ARIMA and Bi-LSTM

annif.suggestionssolar energy|renewable energy sources|smart grids|electrical power networks|machine learning|energy production (process industry)|energy technology|artificial intelligence|production of electricity|forecasts|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p3297en
dc.contributor.authorChen, Yuanhua
dc.contributor.authorBhutta, Muhammad Shoaib
dc.contributor.authorAbubakar, Muhammad
dc.contributor.authorXiao, Dingtian
dc.contributor.authorAlmasoudi, Fahad M.
dc.contributor.authorNaeem, Hamad
dc.contributor.authorFaheem, Muhammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-09T12:14:19Z
dc.date.accessioned2025-06-25T13:07:03Z
dc.date.available2023-10-09T12:14:19Z
dc.date.issued2023-05-25
dc.description.abstractThe integration of renewable energy resources into smart grids has become increasingly important to address the challenges of managing and forecasting energy production in the fourth energy revolution. To this end, artificial intelligence (AI) has emerged as a powerful tool for improving energy production control and management. This study investigates the application of machine learning techniques, specifically ARIMA (auto-regressive integrated moving average) and Bi-LSTM (bidirectional long short-term memory) models, for predicting solar power production for the next year. Using one year of real-time solar power production data, this study trains and tests these models on performance measures such as mean absolute error (MAE) and root mean squared error (RMSE). The results demonstrate that the Bi-LSTM (bidirectional long short-term memory) model outperforms the ARIMA (auto-regressive integrated moving average) model in terms of accuracy and is able to successfully identify intricate patterns and long-term relationships in the real-time-series data. The findings suggest that machine learning techniques can optimize the integration of renewable energy resources into smart grids, leading to more efficient and sustainable power systems.-
dc.description.notification© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent25-
dc.identifier.olddbid19138
dc.identifier.oldhandle10024/16333
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1522
dc.identifier.urnURN:NBN:fi-fe20231009139397-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.doi10.3390/su15118555-
dc.relation.funderDepartment of Education of Guangxi Autonomous Region-
dc.relation.grantnumber2023KY0826-
dc.relation.ispartofjournalSustainability-
dc.relation.issn2071-1050-
dc.relation.issue11-
dc.relation.urlhttps://doi.org/10.3390/su15118555-
dc.relation.volume15-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001005761400001-
dc.source.identifierScopus:85163063360-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16333
dc.subjectrenewable energy-
dc.subjectenergy forecasting-
dc.subjectARIMA-
dc.subjectBi-LSTM model-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysosmart grids-
dc.titleEvaluation of Machine Learning Models for Smart Grid Parameters: Performance Analysis of ARIMA and Bi-LSTM-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Chen_Bhutta_Abubakar_Xiao_Almasoudi_Naeem_Faheem_2023.pdf
Size:
3.01 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat