SPHERE-DNA : Privacy-Preserving Federated Learning for eHealth

annif.suggestionsmachine learning|data security|public health service|edge computing|privacy|residential environment|data protection|cloud services|telemedicine|microcontrollers|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p2658|http://www.yso.fi/onto/yso/p39139|http://www.yso.fi/onto/yso/p10909|http://www.yso.fi/onto/yso/p15573|http://www.yso.fi/onto/yso/p3636|http://www.yso.fi/onto/yso/p24167|http://www.yso.fi/onto/yso/p20333|http://www.yso.fi/onto/yso/p25316en
dc.contributor.authorNurmi, Jari
dc.contributor.authorXu, Yinda
dc.contributor.authorBoutellier, Jani
dc.contributor.authorTan, Bo
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-12T08:30:12Z
dc.date.accessioned2025-06-25T14:05:25Z
dc.date.available2025-06-02T22:00:08Z
dc.date.issued2023-06-02
dc.description.abstractThe rapid growth of chronic diseases and medical conditions (e.g. obesity, depression, diabetes, respiratory and musculoskeletal diseases) in many OECD countries has become one of the most significant wellbeing problems, which also poses pressure to the sustainability of healthcare and economies. Thus, it is important to promote early diagnosis, intervention, and healthier lifestyles. One partial solution to the problem is extending long-term health monitoring from hospitals to natural living environments. It has been shown in laboratory settings and practical trials that sensor data, such as camera images, radio samples, acoustics signals, infrared etc., can be used for accurately modelling activity patterns that are related to different medical conditions. However, due to the rising concern related to private data leaks and, consequently, stricter personal data regulations, the growth of pervasive residential sensing for healthcare applications has been slow. To mitigate public concern and meet the regulatory requirements, our national multi-partner SPHERE-DNA project aims to combine pervasive sensing tech-nology with secured and privacy-preserving distributed privacy frameworks for healthcare applications. The project leverages local differential privacy federated learning (LDP-FL) to achieve resilience against active and passive attacks, as well as edge computing to avoid transmitting sensitive data over networks. Combinations of sensor data modalities and security architectures are explored by a machine learning architecture for finding the most viable technology combinations, relying on metrics that allow balancing between computational cost and accuracy for a desired level of privacy. We also consider realistic edge computing platforms and develop hardware acceleration and approximate computing techniques to facilitate the adoption of LDP-FL and privacy preserving signal processing to lightweight edge processors. A proof-of-concept (PoC) multimodal sensing system will be developed and a novel multimodal dataset will be collected during the project to verify the concept.-
dc.description.notification©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-06-02
dc.embargo.terms2025-06-02
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.identifier.isbn978-3-9819263-7-8-
dc.identifier.olddbid19146
dc.identifier.oldhandle10024/16345
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3305
dc.identifier.urnURN:NBN:fi-fe20231012139857-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceDesign, Automation & Test in Europe Conference & Exhibition (DATE)-
dc.relation.doi10.23919/DATE56975.2023.10137048-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber345681-
dc.relation.isbn979-8-3503-9624-9-
dc.relation.ispartof2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)-
dc.relation.ispartofseriesProceedings : Design, Automation, and Test in Europe Conference and Exhibition-
dc.relation.issn1558-1101-
dc.relation.issn1530-1591-
dc.relation.urlhttps://doi.org/10.23919/DATE56975.2023.10137048-
dc.source.identifierScopus:85162676054-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16345
dc.subjectdiffer-ential privacy-
dc.subjectLDP-FL-
dc.subjectmulti-partner project-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysomachine learning-
dc.titleSPHERE-DNA : Privacy-Preserving Federated Learning for eHealth-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Nurmi_Xu_Boutellier_Tan_2023.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat