A new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market

annif.suggestionselectricity market|smart grids|prices|electricity|distribution of electricity|machine learning|neural networks (information technology)|markets (systems)|expert systems|elasticity (economy)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p5828|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p1865|http://www.yso.fi/onto/yso/p498|http://www.yso.fi/onto/yso/p3204en
dc.contributor.authorPourdaryaei, Alireza
dc.contributor.authorMohammadi, Mohammad
dc.contributor.authorMubarak, Hamza
dc.contributor.authorAbdellatif, Abdallah
dc.contributor.authorKarimi, Mazaher
dc.contributor.authorGryazina, Elena
dc.contributor.authorTerzija, Vladimir
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2145-4936-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-09-01T05:24:05Z
dc.date.accessioned2025-06-25T12:52:08Z
dc.date.available2023-09-01T05:24:05Z
dc.date.issued2023-08-23
dc.description.abstractDue to recent technical improvements, the smart grid has become a feasible platform for electricity market participants to successfully regulate their bidding process based on demand-side management (DSM) perspectives. At this level, practical design, implementation, and assessment of numerous demand response mechanisms and robust short-term price forecasting development in day-ahead transactions are all critical. The accuracy and effectiveness of the day-ahead price forecasting process are crucial concerns in a deregulated market. In this market, the reason for low accuracy is the limitation of electricity generation compared to the electricity demand variations. Hence, this study proposes a suitable technique for forecasting electricity prices using a multi-head self-attention and Convolutional Neural networks (CNN) based approach. Further, this study develops a feature selection technique using mutual information (MI) and neural networks (NN) to choose suitable input variable subsets significantly affecting electricity price predictions simultaneously. The combination of MI and NN reduces the number of input features used in the model, thereby decreasing the computational complexity of the NN. The actual data sets from the Ontario electricity market in 2020 are acquired to verify the simulation results. Finally, the simulation results proved the efficiency of the proposed method by demonstrating increased accuracy by attaining the lowest average value for MAPE and RMSE with a value of 1.75% and 0.0085, respectively, and compared to results obtained by recent computational intelligence approaches. By attaining accurate electricity price results, the significance of this study can be summed up as aiding the electricity industry's operators in administering effective energy management, efficient resource allocation, and informed decision-making.-
dc.description.notification© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent18-
dc.identifier.olddbid18985
dc.identifier.oldhandle10024/16161
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1052
dc.identifier.urnURN:NBN:fi-fe20230901115106-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.eswa.2023.121207-
dc.relation.funderDitartis project, “Network of Excellence in Digital Technologies and AI Solutions for Electromechanical and Power Systems Applications”-
dc.relation.funderThe Ministry of Science and Higher Education of the Russian Federation-
dc.relation.grantnumber101079242 – HORIZON-WIDERA-2021-ACCESS-03-
dc.relation.grantnumber075-10-2021- 067-
dc.relation.grantnumber000000S707521QJX0002-
dc.relation.ispartofjournalExpert Systems with Applications-
dc.relation.issn1873-6793-
dc.relation.issn0957-4174-
dc.relation.urlhttps://doi.org/10.1016/j.eswa.2023.121207-
dc.relation.volume235-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16161
dc.subjectConvolutional neural networks-
dc.subjectElectricity price forecasting-
dc.subjectFeature selection-
dc.subjectMulti-head attention-
dc.subject1D-CNN-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoelectricity market-
dc.titleA new framework for electricity price forecasting via multi-head self-attention and CNN-based techniques in the competitive electricity market-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Pourdaryaei_Mohammadi_Mubarak_Abdellatif_Karimi_Gryazina_Terzija_2023.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat