Harnessing enhanced rock weathering for carbon neutrality: potential and challenges in China

dc.contributor.authorCong, Lianghan
dc.contributor.authorLu, Shuaiyi
dc.contributor.authorJiang, Pan
dc.contributor.authorZheng, Tianqi
dc.contributor.authorZhang, Yanjun
dc.contributor.authorLü, Xiaoshu
dc.contributor.authorYu, Ziwang
dc.contributor.authorXu, Tianfu
dc.date.accessioned2025-12-03T08:30:00Z
dc.date.issued2025
dc.description.abstractThe escalating urgency of global climate change underscores the need for effective strategies to manage atmospheric CO₂ concentrations. Enhanced rock weathering (ERW) has emerged as a promising carbon removal technology. By applying powdered silicate rocks rich in calcium and magnesium, such as basalt, the dissolution process can be accelerated to sequester CO₂ in the form of dissolved inorganic carbon (DIC) within soil porewater, which is ultimately transported to the ocean, achieving long-term carbon storage. Using a life cycle assessment (LCA) framework, this study evaluates the feasibility of basalt-based ERW in China, focusing on its environmental and economic implications across various application scenarios. The findings highlight that basalt particle size and environmental conditions are critical determinants of weathering efficiency. Smaller particles, elevated temperatures, and acidic soils enhance dissolution rates but also result in higher energy consumption for grinding and increased carbon emissions. China's extensive basalt reserves, diverse climatic conditions, and vast agricultural lands create favorable conditions for large-scale ERW implementation. Nationwide application of basalt at p80 = 100 μm could sequester 0.2 Gt CO₂ by 2100, while finer particles (p80 = 10 μm) could achieve 0.5 Gt by 2060. Despite its potential, ERW faces challenges, including heavy metal release, uncertainties in long-term weathering rates, and cost constraints.en
dc.description.notification©2025 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.reviewstatusvertaisarvioitufi
dc.embargo.lift2027-10-17
dc.embargo.terms2027-10-17
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19351
dc.identifier.urnURN:NBN:fi-fe20251203113846
dc.language.isoen
dc.publisherElsevier
dc.publisher.countryNETHERLANDS
dc.relation.doihttps://doi.org/10.1016/j.earscirev.2025.105309
dc.relation.ispartofjournalEarth-science reviews
dc.relation.issn1872-6828
dc.relation.issn0012-8252
dc.relation.issn0012-8252
dc.relation.urlhttps://doi.org/10.1016/j.earscirev.2025.105309
dc.relation.urlhttps://urn.fi/URN:NBN:fi-fe20251203113846
dc.relation.volume271
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source.identifierWOS:001605896300001
dc.source.identifier2-s2.0-105020854325
dc.source.identifier4eba9c9e-2f7f-463c-9674-a031cd285e43
dc.source.metadataSoleCRIS
dc.subjectCarbon dioxide storage
dc.subjectLife cycle assessment
dc.subjectEnhanced rock weathering
dc.subjectBasalt mineralization
dc.subjectChina climate target
dc.subject.disciplineEnergy Technologyen
dc.subject.disciplineEnergiatekniikkafi
dc.subject.disciplineEnergy Technologyen
dc.subject.disciplineEnergiatekniikkafi
dc.titleHarnessing enhanced rock weathering for carbon neutrality: potential and challenges in China
dc.type.okmA1 Journal article (peer-reviewed)en
dc.type.okmA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä (vertaisarvioitu)fi
dc.type.publicationarticle
dc.type.versionacceptedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
nbnfi-fe20251203113846.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format

Kokoelmat