High-Precision Identification of Power Quality Disturbances Based on Discrete Orthogonal S-Transforms and Compressed Neural Network Methods

annif.suggestionssignal processing|machine learning|classification|neural networks (information technology)|distribution of electricity|interferences|Pakistan|data communications networks|Lahore|software technology|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p12668|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p544|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p1957|http://www.yso.fi/onto/yso/p208737|http://www.yso.fi/onto/yso/p6297en
dc.contributor.authorAbubakar, Muhammad
dc.contributor.authorNagra, Arfan Ali
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorMudassar, Muhammad
dc.contributor.authorSohail, Muhammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-10-11T13:14:23Z
dc.date.accessioned2025-06-25T12:54:29Z
dc.date.available2023-10-11T13:14:23Z
dc.date.issued2023-08-11
dc.description.abstractPower quality disturbances (PQDs) occur as the use of non-linear load and renewable-based micro-grids increases. This paper presents a new algorithm that consists of the discrete orthogonal S-transform (DOST) in the feature extraction stage, compressive sensing (CS) in the feature reduction stage, and a deep stacking network (DSN) for the automatic classification of single and multiple PQDs. It compresses the extracted feature matrix (orthogonal S-matrix coefficients) to minimize the computational process and provide more diversified features. Firstly, PQDs data is generated from a modified IEEE 13 bus system with wind grid integration, both synthetically and in real time. Moreover, compressive measurements of 24 types of multiple PQDs events and nine types of single PQDs events of synthetic and real data, and 12 type of three-phase single and multiple PQDs from the modified IEEE wind grid integration are fed to a proposed DSN classifier for PQD recognition. The DOST-based CS feature extraction technique achieves good robustness and time-frequency localization while retaining useful information. The DSN classifier method utilizes a Batch-mode gradient as a fine-tune, which has less noise gradient and improved efficiency of PQD classification. A noise level of 20 dB to 50 dB is considered. Other models, such as k-Nearest Neighbor (KNN), Multiclass Support Vector Machine (MSVM), and ensemble learner methods, are also developed to compare the efficiency. The high classification results demonstrate that the DOST-CS feature extraction and the DSN classifier have high precision in identifying multiple power quality events, even in noisy conditions.-
dc.description.notification©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent18-
dc.identifier.olddbid19144
dc.identifier.oldhandle10024/16343
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1120
dc.identifier.urnURN:NBN:fi-fe20231011139787-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2023.3304375-
dc.relation.funderUniversity of Vaasa-
dc.relation.funderAcademy of Finland-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2023.3304375-
dc.relation.volume11-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001051653400001-
dc.source.identifierScopus:85167803535-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16343
dc.subjectcompressed sensing-
dc.subjectdeep neural network-
dc.subjectdiscrete orthogonal S-transform-
dc.subjectMultiple power quality disturbances identification-
dc.subjectwind-grid distribution-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleHigh-Precision Identification of Power Quality Disturbances Based on Discrete Orthogonal S-Transforms and Compressed Neural Network Methods-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Abubakar_Nagra_Faheem_Mudassar_Sohail_2023.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat