A minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model

annif.suggestionsclouds|forecasts|cloud services|imaging|radiation|smart grids|machine learning|effects (results)|x-ray examination|Three-dimensional imaging|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p9786|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p24167|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p4150|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p795|http://www.yso.fi/onto/yso/p10181|http://www.yso.fi/onto/yso/p26739en
dc.contributor.authorWang, Fei
dc.contributor.authorXuan, Zhiming
dc.contributor.authorZhen, Zhao
dc.contributor.authorLi, Yu
dc.contributor.authorLi, Kangping
dc.contributor.authorZhao, Liqiang
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalão, João P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-07-31T07:20:02Z
dc.date.accessioned2025-06-25T13:38:26Z
dc.date.available2022-10-19T15:01:40Z
dc.date.issued2020-09-15
dc.description.abstractAccurate minutely solar irradiance forecasting is the basis of minute-level photovoltaic (PV) power forecasting. In this paper, a minutely solar irradiance forecasting method based on real-time surface irradiance mapping model is proposed, which is beneficial to achieve higher accuracy in solar power forecasting. First, we extract the red–green–blue (RGB) values and position information of pixels in sky images after background elimination and distortion rectification, to explore the mapping relationship between sky image and solar irradiance. Then a real-time sky image-irradiance mapping model is built, trained, and updated according to real-time sky images and solar irradiance. Finally, the future solar irradiance within the time horizons varying from 1 min to 10 min ahead are capable to be forecasted by using the latest updated surface irradiance mapping model with extracted input from the current sky image. The average measures of proposed method by using MAPE, RMSE, MBE are 22.66%, 92.72, −1.26% for blocky clouds; 20.44%, 132.15, −1.06% for thin clouds and 18.82%, 120.78, −0.98% for thick clouds, thus deliver much higher forecasting accuracy than other benchmarks.-
dc.description.notification©2020 Elsevier Ltd. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2022-09-15
dc.embargo.terms2022-09-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent20-
dc.identifier.olddbid12504
dc.identifier.oldhandle10024/11286
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2462
dc.identifier.urnURN:NBN:fi-fe2020073147790-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.enconman.2020.113075-
dc.relation.ispartofjournalEnergy conversion and management-
dc.relation.issn1879-2227-
dc.relation.issn0196-8904-
dc.relation.urlhttps://doi.org/10.1016/j.enconman.2020.113075-
dc.relation.volume220-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11286
dc.subjectsolar irradiance forecasting-
dc.subjectminutely-
dc.subjectsky image-
dc.subjectsurface irradiance mapping-
dc.subjectreal-time model-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoclouds-
dc.subject.ysoforecasts-
dc.subject.ysocloud services-
dc.subject.ysoimaging-
dc.subject.ysoradiation-
dc.subject.ysosmart grids-
dc.subject.ysomachine learning-
dc.subject.ysoeffects (results)-
dc.subject.ysox-ray examination-
dc.subject.ysoThree-dimensional imaging-
dc.titleA minutely solar irradiance forecasting method based on real-time sky image-irradiance mapping model-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wang_Xuan_Zhen_Li_Li_Zhao_Shafie-khah_Catalão_2020_AAM-Paper_ECM_Fei.pdf
Size:
2.89 MB
Format:
Adobe Portable Document Format
Description:
article

Kokoelmat