Optimal Singular Value Decomposition Based Big Data Compression Approach in Smart Grids

annif.suggestionssmart grids|electrical power networks|distribution of electricity|data compression|big data|data mining|automation|renewable energy sources|optimisation|algorithms|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p38702|http://www.yso.fi/onto/yso/p27202|http://www.yso.fi/onto/yso/p5520|http://www.yso.fi/onto/yso/p11477|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p14524en
dc.contributor.authorHashemipour, Naser
dc.contributor.authorAghaei, Jamshid
dc.contributor.authorKavousi-fard, Abdollah
dc.contributor.authorNiknam, Taher
dc.contributor.authorSalimi, Ladan
dc.contributor.authordel Granado, Pedro Crespo
dc.contributor.authorShafie-Khah, Miadreza
dc.contributor.authorWang, Fei
dc.contributor.authorCatalão, João P. S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-01-13T13:41:00Z
dc.date.accessioned2025-06-25T13:24:31Z
dc.date.available2023-04-15T22:00:07Z
dc.date.issued2021-04-15
dc.description.abstractThe smart grid is a fully automatic delivery grid for electricity power with a two-way reliable flow of electricity and information among different equipment on the grid. Smart meters and sensors monitoring the system provide a huge amount of data in various part of smart grid. To logically manage this trouble, a new lossy data compression approach for big data compression is proposed. The optimal singular value decomposition (SVD) is applied to a matrix that achieves the optimal number of singular values to the sending process, and the other ones will be neglected. This goal is done due to the quality of retrieved data and the compression ratio. In the presented scheme, to implement the optimization framework, various intelligent optimization methods are used to determine the number of optimal values in the elimination stage. The efficiency and capabilities of the proposed method are examined using a wide range of data types, from electricity market data to image processing benchmarks. The comparisons show that the compression level obtained by the proposed method can dominate the points given by the existing SVD rank reduction methods. Also, as the other finding of this article, the performance of the rank reduction methods depends on the application and data types. It means that a rank reduction method can reveal a good performance in one application and performs unacceptably for another purpose. So, the optimized rank reduction can pave the way toward a robust and reliable performance.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-04-15
dc.embargo.terms2023-04-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent10-
dc.format.pagerange3296-3305-
dc.identifier.olddbid15357
dc.identifier.oldhandle10024/13421
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2059
dc.identifier.urnURN:NBN:fi-fe202201132298-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TIA.2021.3073640-
dc.relation.funderFEDER funds through COMPETE2020-
dc.relation.funderPortuguese funds through FCT-
dc.relation.grantnumberPOCI-01-0145-FEDER-029803 (02/SAICT/2017)-
dc.relation.ispartofjournalIEEE Transactions on Industry Applications-
dc.relation.issn1939-9367-
dc.relation.issn0093-9994-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1109/TIA.2021.3073640-
dc.relation.volume57-
dc.source.identifierWOS:000673633200007-
dc.source.identifierScopus: 85104670006-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13421
dc.subjectsingular value decomposition (SVD)-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysosmart grids-
dc.subject.ysodata compression-
dc.subject.ysobig data-
dc.subject.ysooptimisation-
dc.titleOptimal Singular Value Decomposition Based Big Data Compression Approach in Smart Grids-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hashemipour_Aghaei_Kavousi-fard_Niknam_Salimi_del Granado_Shafie-Khah_Wang_Catalão_2021.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat