Flexibility Forecast at Local Energy Community Level

annif.suggestionsforecasts|resiliency (flexibility)|energy production (process industry)|electrical power networks|renewable energy sources|energy control|energy policy|machine learning|electricity market|distribution of electricity|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p17703|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p2388|http://www.yso.fi/onto/yso/p2387|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p187en
dc.contributor.authorFiroozi, Hooman
dc.contributor.authorKhajeh, Hosna
dc.contributor.authorLaaksonen, Hannu
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-5020-0279-
dc.contributor.orcidhttps://orcid.org/0000-0001-9378-8500-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-29T06:20:32Z
dc.date.accessioned2025-06-25T13:27:27Z
dc.date.available2023-12-21T23:00:05Z
dc.date.issued2021-12-21
dc.description.abstractLarge-scale integration of intermittent renewable energy resources into power systems increases the need for flexibility services such as frequency and voltage control. In the future, system operators need to utilize more flexible energy resources from all levels of the system in order to fulfill flexibility needs. Aggregated customers in form of a local energy community (LEC) are potential resources which can provide a part of the required flexibility. In this regard, accurate forecasting of flexible capacities of a LEC is essential. This paper proposes a methodology to estimate the flexibility of a LEC based on the LEC's predicted consumption. In addition, the paper suggests a novel prediction method which is based on a three-branch architecture using recurrent neural networks (RNN) and long short-term memory (LSTM) units to forecast the consumption of the LEC considering its temporal dependencies. Finally, the proposed prediction methods are implemented on a case study and the results are compared with each other.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-12-21
dc.embargo.terms2023-12-21
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.format.pagerange1-5-
dc.identifier.isbn978-1-6654-4875-8-
dc.identifier.olddbid15727
dc.identifier.oldhandle10024/13735
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2133
dc.identifier.urnURN:NBN:fi-fe2022032925722-
dc.language.isoswe-
dc.publisherIEEE-
dc.relation.conferenceIEEE PES Innovative Smart Grid Technologies Conference Europe-
dc.relation.doi10.1109/ISGTEurope52324.2021.9640214-
dc.relation.funderFLEXIMAR-project-
dc.relation.ispartof2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)-
dc.relation.urlhttps://doi.org/10.1109/ISGTEurope52324.2021.9640214-
dc.source.identifierScopus:85123927090-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13735
dc.subjectelectricity demand prediction-
dc.subjectflexibility estimation-
dc.subjectflexibility forecasting-
dc.subjectlocal energy community-
dc.subjectRNN LSTM-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleFlexibility Forecast at Local Energy Community Level-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Firoozi_Khajeh_Laaksonen_2021.pdf
Size:
595.23 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat