Machine learning in oral squamous cell carcinoma : current status, clinical concerns and prospects for future - A systematic review

annif.suggestionsmachine learning|squamous cell carcinoma|cancerous diseases|artificial intelligence|oral cancer|forecasts|tongue cancer|Three-dimensional imaging|algorithms|electronic mail addresses|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p16044|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p16988|http://www.yso.fi/onto/yso/p26739|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p15904en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorYoussef, Omar
dc.contributor.authorPirinen, Matti
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorMäkitie, Antti A.
dc.contributor.authorLeivo, Ilmo
dc.contributor.authorAlmangush, Alhadi
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-05-03T14:22:49Z
dc.date.accessioned2025-06-25T13:16:57Z
dc.date.available2022-05-01T00:00:28Z
dc.date.issued2021-05-01
dc.description.abstractBackground Oral cancer can show heterogenous patterns of behavior. For proper and effective management of oral cancer, early diagnosis and accurate prediction of prognosis are important. To achieve this, artificial intelligence (AI) or its subfield, machine learning, has been touted for its potential to revolutionize cancer management through improved diagnostic precision and prediction of outcomes. Yet, to date, it has made only few contributions to actual medical practice or patient care. Objectives This study provides a systematic review of diagnostic and prognostic application of machine learning in oral squamous cell carcinoma (OSCC) and also highlights some of the limitations and concerns of clinicians towards the implementation of machine learning-based models for daily clinical practice. Data sources We searched OvidMedline, PubMed, Scopus, Web of Science, and Institute of Electrical and Electronics Engineers (IEEE) databases from inception until February 2020 for articles that used machine learning for diagnostic or prognostic purposes of OSCC. Eligibility criteria Only original studies that examined the application of machine learning models for prognostic and/or diagnostic purposes were considered. Data extraction Independent extraction of articles was done by two researchers (A.R. & O.Y) using predefine study selection criteria. We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) in the searching and screening processes. We also used Prediction model Risk of Bias Assessment Tool (PROBAST) for assessing the risk of bias (ROB) and quality of included studies. Results A total of 41 studies were published to have used machine learning to aid in the diagnosis/or prognosis of OSCC. The majority of these studies used the support vector machine (SVM) and artificial neural network (ANN) algorithms as machine learning techniques. Their specificity ranged from 0.57 to 1.00, sensitivity from 0.70 to 1.00, and accuracy from 63.4 % to 100.0 % in these studies. The main limitations and concerns can be grouped as either the challenges inherent to the science of machine learning or relating to the clinical implementations. Conclusion Machine learning models have been reported to show promising performances for diagnostic and prognostic analyses in studies of oral cancer. These models should be developed to further enhance explainability, interpretability, and externally validated for generalizability in order to be safely integrated into daily clinical practices. Also, regulatory frameworks for the adoption of these models in clinical practices are necessary.-
dc.description.notification©2021 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2022-05-01
dc.embargo.terms2022-05-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid14335
dc.identifier.oldhandle10024/12475
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1844
dc.identifier.urnURN:NBN:fi-fe2021050328626-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.artmed.2021.102060-
dc.relation.ispartofjournalArtificial Intelligence in Medicine-
dc.relation.issn1873-2860-
dc.relation.issn0933-3657-
dc.relation.urlhttps://doi.org/10.1016/j.artmed.2021.102060-
dc.relation.volume115-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierScopus: 85103775829-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12475
dc.subjectOral squamous cell carcinoma-
dc.subjectSystematic review-
dc.subjectexplainable AI-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.titleMachine learning in oral squamous cell carcinoma : current status, clinical concerns and prospects for future - A systematic review-
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|en=A2 Peer-reviewed review article|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Youssef_Pirinen_Elmusrati_Mäkitie_Leivo_Almangush_2021.pdf
Size:
1.49 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat