Novel chemical kinetic mechanism for CFD simulation of hydrogen-enriched natural gas/diesel RCCI combustion

annif.suggestionsemissions|combustion engines|fuels|combustion (active)|diesel engines|natural gas|nitrogen oxides|carbon dioxide|ignition|simulation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p437|http://www.yso.fi/onto/yso/p4770|http://www.yso.fi/onto/yso/p12265|http://www.yso.fi/onto/yso/p3191|http://www.yso.fi/onto/yso/p17227|http://www.yso.fi/onto/yso/p7053|http://www.yso.fi/onto/yso/p2802|http://www.yso.fi/onto/yso/p4728|http://www.yso.fi/onto/yso/p25859|http://www.yso.fi/onto/yso/p4787en
dc.contributor.authorFakhari, Amir Hossein
dc.contributor.authorSalahi, Mohammad Mahdi
dc.contributor.authorGharehghani, Ayat
dc.contributor.authorHunicz, Jacek
dc.contributor.authorMikulski, Maciej
dc.contributor.authorAndwari, Amin Mahmoudzadeh
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-8903-4693-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-04-14T07:26:36Z
dc.date.accessioned2025-06-25T13:59:20Z
dc.date.issued2025-02-01
dc.description.abstractReactivity Controlled Compression Ignition (RCCI) is a promising approach for decarbonizing marine engines by integrating green hydrogen into natural gas (NG) supply streams. This dual-fuel strategy improves efficiency and minimizes emissions. To simulate RCCI engines effectively, accurate chemical kinetic mechanisms tailored for internal combustion engines are crucial. This study develops a reduced mechanism with 60 species and 372 reactions, optimizing it for ignition delay time (IDT) and laminar flame speed (LFS). Laboratory tests validate the mechanism, showing a 20% improvement in IDT prediction accuracy over existing NG-diesel models, with simulation errors reduced to 0.2 ms. CFD simulations using the mechanism evaluate H₂-enriched NG RCCI combustion, revealing that small-scale H₂ addition enhances combustion efficiency by reducing methane slip and CO emissions. A 30% H₂ substitution (energy ratio) improves combustion efficiency by 3%, despite a 50% increase in NOx emissions, which remain under 93 ppm. This study proposes a novel mechanism for RCCI combustion simulations, enhancing predictive accuracy and revealing key benefits of H2-enriched NG combustion.-
dc.description.notification©2025 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2027-02-01
dc.embargo.terms2027-02-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent17-
dc.format.pagerange1408-1424-
dc.identifier.olddbid22890
dc.identifier.oldhandle10024/18995
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3126
dc.identifier.urnURN:NBN:fi-fe2025041426265-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijhydene.2025.01.451-
dc.relation.funderBusiness Finland-
dc.relation.grantnumber2911/31/2022-
dc.relation.ispartofjournalInternational Journal of Hydrogen Energy-
dc.relation.issn1879-3487-
dc.relation.issn0360-3199-
dc.relation.urlhttps://doi.org/10.1016/j.ijhydene.2025.01.451-
dc.relation.volume105-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:001418171900001-
dc.source.identifier2-s2.0-85216450356-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18995
dc.subjectRCCI combustion-
dc.subjectCFD-
dc.subjectHydrogen-enriched natural gas-
dc.subjectReaction mechanism validation-
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|-
dc.titleNovel chemical kinetic mechanism for CFD simulation of hydrogen-enriched natural gas/diesel RCCI combustion-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fakhari_Salahi_Gharehghani_Hunicz_Mikulski_Andwari_2025.pdf
Size:
2.02 MB
Format:
Adobe Portable Document Format

Kokoelmat