Comparison of Machine Learning Algorithms for Classification of Partial Discharge Signals in Medium Voltage Components

annif.suggestionsmachine learning|algorithms|classification|voltage|electrical power networks|signal processing|electrical engineering|weather forecasting|smart grids|signal analysis|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p12668|http://www.yso.fi/onto/yso/p15755|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p26805en
dc.contributor.authorKumar, Haresh
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorHussain, Ghulam Amjad
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2556-1464-
dc.contributor.orcidhttps://orcid.org/0000-0002-7429-3171-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-03-28T11:57:04Z
dc.date.accessioned2025-06-25T13:27:28Z
dc.date.available2023-12-21T23:00:05Z
dc.date.issued2021-12-21
dc.description.abstractPartial discharge (PD) diagnosis is an effective tool to track the condition of electrical insulation in the medium voltage (MV) power components. Machine Learning Algorithms (MLAs) promote automated diagnosis solutions for large scale and reliable maintenance strategy. This paper aims to investigate the performance of two MLAs: Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) for the classification of different types of PD sources. Suitable features are extracted by applying statistical parameters on the coefficients of discrete wavelet transform (DWT) for observing the performance of both MLAs. The performance of the algorithms is evaluated using key performance indicators (KPIs); accuracy, prediction speed and training time. Besides KPIs, a confusion matrix is presented to highlight the accurately classified and misclassified PD signals for the SVM algorithm. Comparative study of both algorithms demonstrates that SVM provides better results as compared to the KNN algorithm. The proposed solution can be valuable for the development of automated classification.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-12-21
dc.embargo.terms2023-12-21
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent6-
dc.format.pagerange1-6-
dc.identifier.isbn978-1-6654-4875-8-
dc.identifier.olddbid15719
dc.identifier.oldhandle10024/13731
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2134
dc.identifier.urnURN:NBN:fi-fe2022032825671-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE PES Innovative Smart Grid Technologies Conference Europe-
dc.relation.doi10.1109/ISGTEurope52324.2021.9639923-
dc.relation.funderNissi Foundation-
dc.relation.funderEesti Teadusagentuur-
dc.relation.grantnumberPSG632-
dc.relation.ispartof2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)-
dc.relation.urlhttps://doi.org/10.1109/ISGTEurope52324.2021.9639923-
dc.source.identifierScopus:85123908491-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13731
dc.subjectelectrical insulation-
dc.subjectfeatures extraction-
dc.subjectkey performance indicators-
dc.subjectmachine learning algorithms-
dc.subjectpartial discharge-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoclassification-
dc.titleComparison of Machine Learning Algorithms for Classification of Partial Discharge Signals in Medium Voltage Components-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kumar_Shafiq_Hussain_Kauhaniemi_2021.pdf
Size:
621.52 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat