Forecasting Electricity Peak Load : Time-Series Modeling Integrating Economic and Demographic Dynamics—A Case Study From Jordan

dc.contributor.authorAljarrah, Rafat
dc.contributor.authorSalem, Qusay
dc.contributor.authorAbuzayed, Anas
dc.contributor.authorKarimi, Mazaher
dc.contributor.authorAbuishmais, Ibrahim
dc.contributor.authorJaber, Hamzeh
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.contributor.orcidhttps://orcid.org/0000-0003-2145-4936
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-12-31T14:55:10Z
dc.date.issued2025-12-18
dc.description.abstractFactors like pricing, transmission expansion, and capacity planning rely on accurate power demand forecasts. This paper intends to utilize time-series models to forecast the peak electricity demand of Jordan's power grid amidst its energy transition, offering insights into necessary expansion and system adjustments over the next decade It explores the relationship between the country's peak load fluctuations over the last three decades and examining factors including the Gross Domestic Product (GDP) and population growth. Autoregressive Integrated Moving Average (ARIMA), and Autoregressive Integrated Moving Average with Explanatory Variable (ARIMA-X), are employed to forecast yearly peak loads, which are also compared with linear regression, providing an enhanced understanding of power generation and network expansion needs for the coming decade. The results show strong correlations between peak load, population growth, and GDP, with the models proving effective in forecasting future peak loads, albeit with caution regarding ARIMA-X. Projections suggest a potential 41% increase in peak load by 2035, reaching around 5300 MW in 14 years. Assuming consistent growth rates in population and GDP, the projections of the peak load also indicate that the peak load might reach twice its current level in the next 2 to 2.5 decades.
dc.description.notification© 2025 The Author(s). Energy Science & Engineering published by Society of Chemical Industry and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0/
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent14
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19556
dc.identifier.urnURN:NBN:fi-fe20251231125712
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.doi10.1002/ese3.70399
dc.relation.funderKing Abdullah I School of Graduate Studies & Scientific Research at Princess Sumaya University for Technology
dc.relation.funderProjekt DEAL
dc.relation.grantnumber2024/2023‐9 (15)
dc.relation.ispartofjournalEnergy science & engineering
dc.relation.issn2050-0505
dc.relation.urlhttps://doi.org/10.1002/ese3.70399
dc.rightsCC BY 4.0
dc.source.identifierWOS:001641639200001
dc.source.identifier2-s2.0-105025021780
dc.subjecteconomic growth; electricity peak load; linear regression; load forecasting; population growth; time series
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|
dc.titleForecasting Electricity Peak Load : Time-Series Modeling Integrating Economic and Demographic Dynamics—A Case Study From Jordan
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Aljarrah_Salem_Abuzayed_Karimi_Abuishmais_Jaber_2025.pdf
Size:
3.42 MB
Format:
Adobe Portable Document Format

Kokoelmat