A deep fusion-based vision transformer for breast cancer classification

annif.suggestionsbreast cancer|diagnostics|machine learning|cancerous diseases|imaging|forecasts|deep learning|computer vision|neural networks (information technology)|mammography|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20019|http://www.yso.fi/onto/yso/p416|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p3532|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p15918en
dc.contributor.authorFiaz, Ahsan
dc.contributor.authorRaza, Basit
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorRaza, Aadil
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-11-11T10:34:28Z
dc.date.accessioned2025-06-25T13:52:49Z
dc.date.available2024-11-11T10:34:28Z
dc.date.issued2024-10-23
dc.description.abstractBreast cancer is one of the most common causes of death in women in the modern world. Cancerous tissue detection in histopathological images relies on complex features related to tissue structure and staining properties. Convolutional neural network (CNN) models like ResNet50, Inception-V1, and VGG-16, while useful in many applications, cannot capture the patterns of cell layers and staining properties. Most previous approaches, such as stain normalization and instance-based vision transformers, either miss important features or do not process the whole image effectively. Therefore, a deep fusion-based vision Transformer model (DFViT) that combines CNNs and transformers for better feature extraction is proposed. DFViT captures local and global patterns more effectively by fusing RGB and stain-normalized images. Trained and tested on several datasets, such as BreakHis, breast cancer histology (BACH), and UCSC cancer genomics (UC), the results demonstrate outstanding accuracy, F1 score, precision, and recall, setting a new milestone in histopathological image analysis for diagnosing breast cancer.-
dc.description.notification© 2024 The Author(s). Healthcare Technology Letters published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.identifier.olddbid21769
dc.identifier.oldhandle10024/18230
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2913
dc.identifier.urnURN:NBN:fi-fe2024111190776-
dc.language.isoeng-
dc.publisherThe Institution of Engineering and Technology-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1049/htl2.12093-
dc.relation.ispartofjournalHealthcare Technology Letters-
dc.relation.issn2053-3713-
dc.relation.urlhttps://doi.org/10.1049/htl2.12093-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001339774200001-
dc.source.identifierScopus:85207189250
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18230
dc.subjectartificial intelligence-
dc.subjectclassification-
dc.subjecthistopathology images-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.subject.ysobreast cancer-
dc.subject.ysomachine learning-
dc.subject.ysodeep learning-
dc.titleA deep fusion-based vision transformer for breast cancer classification-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Fiaz_Raza_Faheem_Raza_2024.pdf
Size:
2.54 MB
Format:
Adobe Portable Document Format

Kokoelmat