The illusion of data validity : Why numbers about people are likely wrong

annif.suggestionsnumerical digits|science|data|interpretation (cognition)|quantitative research|numbers|philosophy of science|popularisation|big data|methodology|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p10616|http://www.yso.fi/onto/yso/p2240|http://www.yso.fi/onto/yso/p27250|http://www.yso.fi/onto/yso/p4511|http://www.yso.fi/onto/yso/p18834|http://www.yso.fi/onto/yso/p1568|http://www.yso.fi/onto/yso/p3016|http://www.yso.fi/onto/yso/p12064|http://www.yso.fi/onto/yso/p27202|http://www.yso.fi/onto/yso/p7509en
dc.contributor.authorJansen, Bernard J.
dc.contributor.authorSalminen, Joni
dc.contributor.authorJung, Soon-Gyo
dc.contributor.authorAlmerekhi, Hind
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Markkinoinnin ja viestinnän yksikkö|en=School of Marketing and Communication|-
dc.contributor.orcidhttps://orcid.org/0000-0003-3230-0561-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-09T11:28:22Z
dc.date.accessioned2025-06-25T12:30:40Z
dc.date.available2023-02-09T11:28:22Z
dc.date.issued2022-10
dc.description.abstractThis reflection article addresses a difficulty faced by scholars and practitioners working with numbers about people, which is that those who study people want numerical data about these people. Unfortunately, time and time again, this numerical data about people is wrong. Addressing the potential causes of this wrongness, we present examples of analyzing people numbers, i.e., numbers derived from digital data by or about people, and discuss the comforting illusion of data validity. We first lay a foundation by highlighting potential inaccuracies in collecting people data, such as selection bias. Then, we discuss inaccuracies in analyzing people data, such as the flaw of averages, followed by a discussion of errors that are made when trying to make sense of people data through techniques such as posterior labeling. Finally, we discuss a root cause of people data often being wrong – the conceptual conundrum of thinking the numbers are counts when they are actually measures. Practical solutions to address this illusion of data validity are proposed. The implications for theories derived from people data are also highlighted, namely that these people theories are generally wrong as they are often derived from people numbers that are wrong.-
dc.description.notification© 2022 Wuhan University. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent14-
dc.identifier.olddbid17732
dc.identifier.oldhandle10024/15218
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/358
dc.identifier.urnURN:NBN:fi-fe2023020926621-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.dim.2022.100020-
dc.relation.funderQatar Computing Research Institute-
dc.relation.ispartofjournalData and Information Management-
dc.relation.issn2543-9251-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1016/j.dim.2022.100020-
dc.relation.volume6-
dc.rightsCC BY 4.0-
dc.source.identifierScopus:85144362127-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15218
dc.subjectPeople data-
dc.subjectMeasurement-
dc.subjectQuantitative paradigm-
dc.subjectStatistics-
dc.subject.disciplinefi=Markkinointi|en=Marketing|-
dc.titleThe illusion of data validity : Why numbers about people are likely wrong-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Jansen_Salminen_Jung_Almerekhi_2022.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat