Household profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data

annif.suggestionsmachine learning|neural networks (information technology)|renewable energy sources|drivers (occupations)|demand side flexibility (electricity)|electricity consumption|electrical power networks|data mining|testing methods|electricity market|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p5501|http://www.yso.fi/onto/yso/p39323|http://www.yso.fi/onto/yso/p15953|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p5520|http://www.yso.fi/onto/yso/p26360|http://www.yso.fi/onto/yso/p16837en
dc.contributor.authorWang, Fei
dc.contributor.authorLu, Xiaoxing
dc.contributor.authorChang, Xiqiang
dc.contributor.authorCao, Xin
dc.contributor.authorYan, Siqing
dc.contributor.authorLi, Kangping
dc.contributor.authorDuic, Neven
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalao, Joao P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-23T11:48:39Z
dc.date.accessioned2025-06-25T12:28:14Z
dc.date.available2024-01-01T23:00:10Z
dc.date.issued2022-01-01
dc.description.abstractAccurate household profiles (e.g., house type, number of occupants) identification is the key to the successful implementation of behavioral demand response. Currently, supervised learning methods are widely adopted to identify household profiles using smart meter data. Such methods could achieve promising performance in the case of sufficient labeled data but show low accuracy if labeled data is insufficient or even unavailable. However, the acquisition of accurately labeled data (usually obtained by survey) is very difficult, costly, and time-consuming in practice due to various reasons such as privacy concerns. To this end, a semi-supervised learning approach is proposed in this paper to address the above issues. Firstly, 78 preliminary features reflecting the household profiles information are extracted from both time and frequency domain. Secondly, feature selection methods are introduced to select more relevant ones as the input of the identification model from the preliminary features. Thirdly, a transductive support vector machine method is adopted to learn the mapping relation between the input features and the output household profile identification results. Case study on an Irish dataset indicates that the proposed approach outperforms supervised learning methods when only limited labeled data is available. Furthermore, the impacts of different feature selection methods (i.e., Filter, Wrapper and Embedding methods) are also investigated, among which the wrapper method performs best, and the identification accuracy improves with the increase of data resolution.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-01-01
dc.embargo.terms2024-01-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.identifier.olddbid17819
dc.identifier.oldhandle10024/15283
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/288
dc.identifier.urnURN:NBN:fi-fe2023022328466-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.energy.2021.121728-
dc.relation.funderNational Key R&D Program of China-
dc.relation.funderChina Postdoctoral Science Foundation-
dc.relation.funderScience & Technology Project of State Grid Hebei Electric Power Co., Ltd-
dc.relation.funderState Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources-
dc.relation.grantnumber2018YFE0122200-
dc.relation.grantnumber2020M680552-
dc.relation.grantnumberSGHEYX00SCJS2000037-
dc.relation.grantnumberLAPS21012-
dc.relation.ispartofjournalEnergy-
dc.relation.issn1873-6785-
dc.relation.issn0360-5442-
dc.relation.urlhttps://doi.org/10.1016/j.energy.2021.121728-
dc.relation.volume238, Part B-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000709411500003-
dc.source.identifierScopus:85113153010-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15283
dc.subjectBehavioral demand response-
dc.subjectFeature selection-
dc.subjectHousehold profile-
dc.subjectSemi-supervised learning-
dc.subjectSmart meter data-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleHousehold profile identification for behavioral demand response: A semi-supervised learning approach using smart meter data-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wang_Lu_Chang_Cao_Yan_Li_Duic_Shafie-khah_Catalao_2022.pdf
Size:
999.11 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat