An Adaptive Denoising Algorithm for Online Condition Monitoring of High-Voltage Power Equipment

annif.suggestionselectric power|noise|electrical engineering|algorithms|condition monitoring|electrical power networks|signal processing|signals|reliability (general)|noise music|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p1213|http://www.yso.fi/onto/yso/p1718|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p15423|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p25766|http://www.yso.fi/onto/yso/p1629|http://www.yso.fi/onto/yso/p38272en
dc.contributor.authorHussain, Amjad
dc.contributor.authorAhmed, Zeeshan
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorZaher, Ashraf
dc.contributor.authorRashid, Zeeshan
dc.contributor.authorLehtonen, Matti
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-2272-0899-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-03-16T10:09:14Z
dc.date.accessioned2025-06-25T12:55:21Z
dc.date.available2021-10-21T00:00:23Z
dc.date.issued2020-10-21
dc.description.abstractPartial discharge (PD) diagnostic is an effective tool for condition monitoring of the high-voltage equipment that provides an updated status of the dielectric insulation of the components. Reliability of the diagnostics depends on the quality of the PD measurement techniques and the processing of the measured PD data. The online measured data suffer from various inaccuracies caused by external noise from various sources such as power electronic equipment, radio broadband signals and wireless communication, etc. Therefore, extraction of useful data from the on-site measurements is still a challenge. This article presents a discrete wavelet transform (DWT)-based adaptive denoising algorithm and evaluates its performance. Various decisive steps in applying DWT-based denoising on any signal, including selection of mother wavelet, number of levels in multiresolution decomposition and criteria for reconstruction of the denoised signals are taken by the proposed algorithm and vary from one signal to another without a human intervention. Hence, the proposed technique is adaptive. The proposed solution can enhance the accuracy of the PD diagnostic for HV power components.-
dc.description.notification©2020 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Electric Power Components and Systems on 21 Oct 2020, available online: http://www.tandfonline.com/10.1080/15325008.2020.1825554-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2021-10-21
dc.embargo.terms2021-10-21
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.format.pagerange1036-1048-
dc.identifier.olddbid13792
dc.identifier.oldhandle10024/12262
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1149
dc.identifier.urnURN:NBN:fi-fe202103167496-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/15325008.2020.1825554-
dc.relation.ispartofjournalElectric Power Components and Systems-
dc.relation.issn1532-5016-
dc.relation.issn1532-5008-
dc.relation.issue9-10-
dc.relation.urlhttps://doi.org/10.1080/15325008.2020.1825554-
dc.relation.volume48-
dc.rightsCC BY-ND 4.0-
dc.source.identifierWOS: 000582350600001-
dc.source.identifierScopus: 85093931571-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12262
dc.subjectadaptive denoising-
dc.subjectdiscrete wavelet transform (DWT)-
dc.subjecthigh voltage-
dc.subjectinsulation diagnostics-
dc.subjectonline monitoring-
dc.subjectsignal denoising-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleAn Adaptive Denoising Algorithm for Online Condition Monitoring of High-Voltage Power Equipment-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Hussain_Ahmed_Shafiq_Zaher_Rashid_Lehtonen_2020.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat