Sensor Networks TDOA Self-Calibration : 2D Complexity Analysis and Solutions

annif.suggestionssensor networks|information networks|signal processing|wireless networks|algorithms|measurement|robots|networks (societal phenomena)|numerical methods|locationing|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p24338|http://www.yso.fi/onto/yso/p12936|http://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p2619|http://www.yso.fi/onto/yso/p5570|http://www.yso.fi/onto/yso/p6588|http://www.yso.fi/onto/yso/p6230en
dc.contributor.authorFerranti, Luca
dc.contributor.authorÅström, Kalle
dc.contributor.authorOskarsson, Magnus
dc.contributor.authorBoutellier, Jani
dc.contributor.authorKannala, Juho
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyDigital Economy-
dc.contributor.orcidhttps://orcid.org/0000-0001-5588-0920-
dc.contributor.orcidhttps://orcid.org/0000-0001-7606-3655-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-01-13T05:53:13Z
dc.date.accessioned2025-06-25T13:35:21Z
dc.date.issued2021-05-13
dc.description.abstractGiven a network of receivers and transmitters, the process of determining their positions from measured pseudoranges is known as network self-calibration. In this paper we consider 2D networks with synchronized receivers but unsynchronized transmitters and the corresponding calibration techniques, known as Time-Difference-Of-Arrival (TDOA) techniques. Despite previous work, TDOA self-calibration is computationally challenging. Iterative algorithms are very sensitive to the initialization, causing convergence issues. In this paper, we present a novel approach, which gives an algebraic solution to two previously unsolved scenarios. We also demonstrate that our solvers produce an excellent initial value for non-linear optimisation algorithms, leading to a full pipeline robust to noise.-
dc.description.notification©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.notificationThis work was partially funded by the Academy of Finland project 327912 REPEAT.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.format.pagerange1-5-
dc.identifier.isbn978-1-7281-7605-5-
dc.identifier.olddbid15351
dc.identifier.oldhandle10024/13415
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2371
dc.identifier.urnURN:NBN:fi-fe202201132102-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceInternational Conference on Acoustics, Speech, and Signal Processing (ICASSP)-
dc.relation.doi10.1109/ICASSP39728.2021.9414634-
dc.relation.funderThe Academy of Finland-
dc.relation.grantnumber327912 REPEAT-
dc.relation.ispartofICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)-
dc.relation.ispartofseriesProceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing-
dc.relation.issn2379-190X-
dc.relation.issn1520-6149-
dc.relation.urlhttps://doi.org/10.1109/ICASSP39728.2021.9414634-
dc.source.identifierScopus: 85115122231-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13415
dc.subjectMinimal Problems-
dc.subjectSensor Networks Calibration-
dc.subjectTime Difference of Arrival-
dc.titleSensor Networks TDOA Self-Calibration : 2D Complexity Analysis and Solutions-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Ferranti_Åström_Oskarsson_Boutellier_Kannala_2021.pdf
Size:
315.88 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat