Robust power management system with generation and demand prediction and critical loads in DC microgrid

annif.suggestionselectrical power networks|microgrids|renewable energy sources|smart grids|distribution of electricity|wind energy|weather forecasting|optimisation|energy production (process industry)|forecasts|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p39009|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p11580|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p3297en
dc.contributor.authorEsmaeili, Mehdi
dc.contributor.authorAhmadi, Ali Akbar
dc.contributor.authorNateghi, Abolfazl
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-09-25T12:17:29Z
dc.date.accessioned2025-06-25T13:03:25Z
dc.date.available2025-01-15T23:00:05Z
dc.date.issued2023-01-15
dc.description.abstractIn this paper, a robust power management system (RPMS) for a DC microgrid is proposed. A novel neural network-based scheme is proposed for the PV cells’ generation prediction using ultraviolet (UV) index, temperature, and cloud coverage which gives a considerable improvement in the prediction error in comparison with the existing works. Moreover, another neural network predicts the demand for the microgrid. The proposed RPMS will make decisions under the uncertainties of these prediction errors such that the system stays robust and works near the optimal operating point. Besides, three different possible scenarios for operation of the microgrid are considered which represents all real operating conditions. Then, three corresponding optimization problems are introduced for theses scenarios. Moreover, without loss of generality, load buses are clustered in one critical load bus and three sheddable load buses. The RPMS keeps the critical load bus voltage in a standard range while feeding the maximum possible sheddable buses with 0.9 p.u. voltage or disconnecting them sequentially. The numerical simulation results show the feasibility and effectiveness of the proposed strategy.-
dc.description.notification©2023 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-01-15
dc.embargo.terms2025-01-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid19075
dc.identifier.oldhandle10024/16282
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1419
dc.identifier.urnURN:NBN:fi-fe20230925137324-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.jclepro.2022.135490-
dc.relation.ispartofjournalJournal of Cleaner Production-
dc.relation.issn1879-1786-
dc.relation.issn0959-6526-
dc.relation.urlhttps://doi.org/10.1016/j.jclepro.2022.135490-
dc.relation.volume384-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000906006700001-
dc.source.identifierScopus:85144018399-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16282
dc.subjectMicrogrid-
dc.subjectRobust power management system (RPMS)-
dc.subjectNeural network-
dc.subjectPrediction of generation-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomicrogrids-
dc.titleRobust power management system with generation and demand prediction and critical loads in DC microgrid-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Esmaeili_Ahmadi_Nateghi_Shafie-khah_2023.pdf
Size:
4.82 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat