Intelligent Protection of CSC-HVDC Lines Based on Moving Average and Maximum Coordinate Difference Criteria

annif.suggestionsmachine learning|electrical engineering|distribution of electricity|transmission of electricity|power lines|artificial intelligence|lightnings|algorithms|faults|electric power lines|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p187|http://www.yso.fi/onto/yso/p19716|http://www.yso.fi/onto/yso/p20336|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p536|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p13601|http://www.yso.fi/onto/yso/p27748en
dc.contributor.authorFarshad, Mohammad
dc.contributor.authorKarimi, Mazaher
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2145-4936-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-08-23T12:27:36Z
dc.date.accessioned2025-06-25T13:17:25Z
dc.date.available2023-07-03T22:00:07Z
dc.date.issued2021-07-03
dc.description.abstractShort-circuit fault detection and classification in high-voltage direct-current (HVDC) electric power transmission lines are necessary for rapid location and removal of faults, as well as for recovering all or part of the power transmission capacity. In this study, a new and efficient technique is designed for protecting current-source converter-based HVDC (CSC-HVDC) lines. In this proposed method, new features considering the moving average and maximum coordinate difference criteria are extracted from local voltage and current signals measured with a relatively low sampling rate at the rectifier side. These extracted features provide excellent recognition to distinguish the external and internal short-circuit faults. The multiclass support vector machine model is also used to detect and classify different short-circuit faults in real-time operation. The comprehensive tests on a CSC-HVDC system verify the suggested protection strategy's high accuracy and dependability even under the circumstances not considered in the initial preparing and training stage. These results also authenticate the designed scheme's stability against external faults and lightning strikes, low sensitivity to measurement noises, and excellent performance in detecting and classifying high-resistance internal faults.-
dc.description.notification©2021 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-07-03
dc.embargo.terms2023-07-03
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid14795
dc.identifier.oldhandle10024/13016
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1860
dc.identifier.urnURN:NBN:fi-fe2021082343909-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.epsr.2021.107439-
dc.relation.ispartofjournalElectric Power Systems Research-
dc.relation.issn1873-2046-
dc.relation.issn0378-7796-
dc.relation.urlhttps://doi.org/10.1016/j.epsr.2021.107439-
dc.relation.volume199-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierScopus: 85109019827-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13016
dc.subjectCurrent-source converter-
dc.subjectHVDC power system-
dc.subjectMaximum coordinate difference-
dc.subjectMoving average-
dc.subjectTransmission line protection-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysomachine learning-
dc.titleIntelligent Protection of CSC-HVDC Lines Based on Moving Average and Maximum Coordinate Difference Criteria-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Farshad_Karimi_2021.pdf
Size:
3.39 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat