Classification of PD Faults Using Features Extraction and K-Means Clustering Techniques

annif.suggestionssignal processing|classification|error analysis|pattern recognition|smart grids|parallel publishing|information technology|innovations|signal analysis|wireless data transmission|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p12266|http://www.yso.fi/onto/yso/p12668|http://www.yso.fi/onto/yso/p9865|http://www.yso.fi/onto/yso/p8266|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p27097|http://www.yso.fi/onto/yso/p5462|http://www.yso.fi/onto/yso/p7903|http://www.yso.fi/onto/yso/p26805|http://www.yso.fi/onto/yso/p5445en
dc.contributor.authorKumar, Haresh
dc.contributor.authorShafiq, Muhammad
dc.contributor.authorHussain, Ghulam Amjad
dc.contributor.authorKumpulainen, Lauri
dc.contributor.authorKauhaniemi, Kimmo
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-2272-0899-
dc.contributor.orcidhttps://orcid.org/0000-0002-7429-3171-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2020-12-03T06:38:34Z
dc.date.accessioned2025-06-25T12:44:23Z
dc.date.available2020-12-03T06:38:34Z
dc.date.issued2020-11-10
dc.description.abstractPartial discharge (PD) diagnostic is a crucial tool for condition monitoring of power system equipment (e.g. switchgear, cable) in the medium voltage (MV) network, which is degraded by the gradual deterioration of insulation elements, ageing, and various operational and environmental stresses. In the MV network, different types of PD faults are generated from different sources and to know the impact of an individual PD fault on the health of MV equipment, classification plays an important role. This paper aims to provide suitable techniques for classifying PD faults. The data is collected from an experimental investigation of three different types of PD faults from MV switchgear and classified using features extraction, dimensionality reduction and clustering techniques. To identify the best classification technique, dimensionality reduction techniques (principal component analysis and t-distributed stochastic neighbour embedding) are used, and their results are compared using the confusion matrix after applying k-means clustering technique.-
dc.description.notification©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent5-
dc.format.pagerange919-923-
dc.identifier.isbn978-1-7281-7100-5-
dc.identifier.olddbid13065
dc.identifier.oldhandle10024/11682
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/817
dc.identifier.urnURN:NBN:fi-fe2020120399213-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.conferenceIEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)-
dc.relation.doi10.1109/ISGT-Europe47291.2020.9248984-
dc.relation.ispartof2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)-
dc.relation.urlhttps://doi.org/10.1109/ISGT-Europe47291.2020.9248984-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/11682
dc.subjectpartial discharge-
dc.subjectmedium voltage-
dc.subjectfeatures extraction-
dc.subjectdimensionality reduction techniques-
dc.subjectk-means clustering-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoclassification-
dc.titleClassification of PD Faults Using Features Extraction and K-Means Clustering Techniques-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kumar_Shafiq_Hussain_Kumpulainen_Kauhaniemi_2020.pdf
Size:
286.25 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat