Reinforcement learning for data center energy efficiency optimization : A systematic literature review and research roadmap

annif.suggestionsenergy efficiency|machine learning|optimisation|neural networks (information technology)|algorithms|deep learning|energy consumption (energy technology)|data communications networks|wireless networks|data centres|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p8328|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2382|http://www.yso.fi/onto/yso/p1957|http://www.yso.fi/onto/yso/p24221|http://www.yso.fi/onto/yso/p27147en
dc.contributor.authorKahil, Hussain
dc.contributor.authorSharma, Shiva
dc.contributor.authorVälisuo, Petri
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0009-0005-1445-4462-
dc.contributor.orcidhttps://orcid.org/0000-0002-9566-6408-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-04-29T08:22:41Z
dc.date.accessioned2025-06-25T14:01:42Z
dc.date.available2025-04-29T08:22:41Z
dc.date.issued2025-03-25
dc.description.abstractWith today’s challenges posed by climate change, global attention is increasingly focused on reducing energy consumption within sustainable communities. As significant energy consumers, data centers represent a crucial area for research in energy efficiency optimization. To address this issue, various algorithms have been employed to develop sophisticated solutions for data center systems. Recently, Reinforcement Learning (RL) and its advanced counterpart, Deep Reinforcement Learning (DRL), have demonstrated promising potential in improving data center energy efficiency. However, a comprehensive review of the deployment of these algorithms remains limited. In this systematic review, we explore the application of RL/DRL algorithms for optimizing data center energy efficiency, with a focus on optimizing the operation of cooling systems and Information and Communication Technology (ICT) processes, including task scheduling, resource allocation, virtual machine (VM) consolidation/placement, and network traffic control. Following the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) protocol, we provide a detailed overview of the methodologies and objectives of 65 identified studies, along with an in-depth analysis of their energy-related results. We also summarize key aspects of these studies, including benchmark comparisons, experimental setups, datasets, and implementation platforms. Additionally, we present a structured qualitative comparison of the Markov Decision Process (MDP) elements for joint optimization studies. Our findings highlight vital research gaps, including the lack of real-time validation for developed algorithms and the absence of multi-scale standardized metrics for reporting energy efficiency improvements. Furthermore, we propose joint optimization of multi-system objectives as a promising direction for future research.-
dc.description.notification© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent27-
dc.identifier.olddbid23166
dc.identifier.oldhandle10024/19097
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3200
dc.identifier.urnURN:NBN:fi-fe2025042932110-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.apenergy.2025.125734-
dc.relation.funderEuropean Union-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber353562-
dc.relation.ispartofjournalApplied Energy-
dc.relation.issn1872-9118-
dc.relation.issn0306-2619-
dc.relation.urlhttps://doi.org/10.1016/j.apenergy.2025.125734-
dc.relation.volume389-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001457168800001-
dc.source.identifier2-s2.0-105000763032-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19097
dc.subjectData center-
dc.subjectEnergy efficiency optimization-
dc.subjectCooling system-
dc.subjectICT system-
dc.subjectReinforcement learning (RL)-
dc.subjectDeep reinforcement learning (DRL)-
dc.subject.disciplinefi=Automaatiotekniikka|en=Automation Technology|-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysodata centres-
dc.titleReinforcement learning for data center energy efficiency optimization : A systematic literature review and research roadmap-
dc.type.okmfi=A2 Katsausartikkeli tieteellisessä aikakauslehdessä|en=A2 Peer-reviewed review article|sv=A2 Översiktsartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Kahil_Sharma_Välisuo_Elmusrati_2025.pdf
Size:
2.32 MB
Format:
Adobe Portable Document Format

Kokoelmat