Convolutional Neural Network-Based Efficient Dense Point Cloud Generation Using Unsigned Distance Fields

annif.suggestionsneural networks (information technology)|machine learning|Three-dimensional imaging|deep learning|computer vision|optimisation|three-dimensionality|measurement|algorithms|visualisation|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p26739|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p1978|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p7938en
dc.contributor.authorBasher, Abol
dc.contributor.authorBoutellier, Jani
dc.contributor.editorYang, Xin-She
dc.contributor.editorSherratt, Simon
dc.contributor.editorDey, Nilanjan
dc.contributor.editorJoshi, Amit
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2025-06-25T13:38:26Z
dc.date.accessioned2025-08-15T07:35:03Z
dc.date.available2025-08-10T22:00:05Z
dc.date.issued2024-08-10
dc.description.abstractDense point cloud generation from a sparse or incomplete point cloud is a crucial and challenging problem in 3D computer vision and computer graphics. So far, the existing methods are either computationally too expensive, suffer from limited resolution, or both. In addition, some methods are strictly limited to watertight surfaces—another major obstacle for a number of applications. To address these issues, we propose a lightweight Convolutional Neural Network that learns and predicts the unsigned distance field for arbitrary 3D shapes for dense point cloud generation using the recently emerged concept of implicit function learning. Experiments demonstrate that the proposed architecture outperforms the state of the art by 7.8× less model parameters, 2.4× faster inference time and up to 24.8% improved generation quality compared to the state-of-the-art.-
dc.description.notification©2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-08-10
dc.embargo.terms2025-08-10
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent9-
dc.format.pagerange507-515-
dc.identifier.isbn978-981-97-3556-3-
dc.identifier.olddbid24196
dc.identifier.oldhandle10024/19943
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/18872
dc.identifier.urnURN:NBN:fi-fe2025062574073-
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.conferenceInternational Congress on Information and Communication Technology-
dc.relation.doi10.1007/978-981-97-3556-3_41-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumberCoEfNet (309903)-
dc.relation.grantnumberREPEAT (327912)-
dc.relation.isbn978-981-97-3555-6-
dc.relation.ispartofProceedings of Ninth International Congress on Information and Communication Technology 2024-
dc.relation.ispartofseriesLecture notes in networks and systems-
dc.relation.issn2367-3389-
dc.relation.issn2367-3370-
dc.relation.numberinseries1012 LNNS-
dc.relation.urlhttps://doi.org/10.1007/978-981-97-3556-3_41-
dc.source.identifier2-s2.0-85201968446-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/19943
dc.subject3D reconstruction; CNN; Implicit representation; Point cloud; Unsigned distance field-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleConvolutional Neural Network-Based Efficient Dense Point Cloud Generation Using Unsigned Distance Fields-
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Basher_Boutellier_2024.pdf
Size:
1.99 MB
Format:
Adobe Portable Document Format

Kokoelmat