Convolutional Neural Network-Based Efficient Dense Point Cloud Generation Using Unsigned Distance Fields
| annif.suggestions | neural networks (information technology)|machine learning|Three-dimensional imaging|deep learning|computer vision|optimisation|three-dimensionality|measurement|algorithms|visualisation|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p26739|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2618|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p1978|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p7938 | en |
| dc.contributor.author | Basher, Abol | |
| dc.contributor.author | Boutellier, Jani | |
| dc.contributor.editor | Yang, Xin-She | |
| dc.contributor.editor | Sherratt, Simon | |
| dc.contributor.editor | Dey, Nilanjan | |
| dc.contributor.editor | Joshi, Amit | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2025-06-25T13:38:26Z | |
| dc.date.accessioned | 2025-08-15T07:35:03Z | |
| dc.date.available | 2025-08-10T22:00:05Z | |
| dc.date.issued | 2024-08-10 | |
| dc.description.abstract | Dense point cloud generation from a sparse or incomplete point cloud is a crucial and challenging problem in 3D computer vision and computer graphics. So far, the existing methods are either computationally too expensive, suffer from limited resolution, or both. In addition, some methods are strictly limited to watertight surfaces—another major obstacle for a number of applications. To address these issues, we propose a lightweight Convolutional Neural Network that learns and predicts the unsigned distance field for arbitrary 3D shapes for dense point cloud generation using the recently emerged concept of implicit function learning. Experiments demonstrate that the proposed architecture outperforms the state of the art by 7.8× less model parameters, 2.4× faster inference time and up to 24.8% improved generation quality compared to the state-of-the-art. | - |
| dc.description.notification | ©2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.embargo.lift | 2025-08-10 | |
| dc.embargo.terms | 2025-08-10 | |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 9 | - |
| dc.format.pagerange | 507-515 | - |
| dc.identifier.isbn | 978-981-97-3556-3 | - |
| dc.identifier.olddbid | 24196 | |
| dc.identifier.oldhandle | 10024/19943 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/18872 | |
| dc.identifier.urn | URN:NBN:fi-fe2025062574073 | - |
| dc.language.iso | eng | - |
| dc.publisher | Springer | - |
| dc.relation.conference | International Congress on Information and Communication Technology | - |
| dc.relation.doi | 10.1007/978-981-97-3556-3_41 | - |
| dc.relation.funder | Academy of Finland | - |
| dc.relation.grantnumber | CoEfNet (309903) | - |
| dc.relation.grantnumber | REPEAT (327912) | - |
| dc.relation.isbn | 978-981-97-3555-6 | - |
| dc.relation.ispartof | Proceedings of Ninth International Congress on Information and Communication Technology 2024 | - |
| dc.relation.ispartofseries | Lecture notes in networks and systems | - |
| dc.relation.issn | 2367-3389 | - |
| dc.relation.issn | 2367-3370 | - |
| dc.relation.numberinseries | 1012 LNNS | - |
| dc.relation.url | https://doi.org/10.1007/978-981-97-3556-3_41 | - |
| dc.source.identifier | 2-s2.0-85201968446 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/19943 | |
| dc.subject | 3D reconstruction; CNN; Implicit representation; Point cloud; Unsigned distance field | - |
| dc.subject.discipline | fi=Tietotekniikka|en=Computer Science| | - |
| dc.title | Convolutional Neural Network-Based Efficient Dense Point Cloud Generation Using Unsigned Distance Fields | - |
| dc.type.okm | fi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Basher_Boutellier_2024.pdf
- Size:
- 1.99 MB
- Format:
- Adobe Portable Document Format
