GNSS Spoofing and Jamming Mitigation : A Comprehensive Review

dc.contributor.authorNoah, Adel
dc.contributor.authorElmusrati, Mohammed
dc.contributor.departmentDigital Economy
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|
dc.date.accessioned2025-10-09T08:35:07Z
dc.date.issued2025-09-24
dc.description.abstractGlobal Navigation Satellite Systems (GNSS) have become an integral part of the modern era, to deliver essential positioning, navigation, and timing (PNT) services for numerous applications. However, the increasing reliance on GNSS has also made these systems vulnerable to various security threats, particularly jamming and spoofing attacks. This comprehensive review examines the state-of-the-art in GNSS spoofing and jamming mitigation techniques, with a special focus on machine learning approaches. Based on an analysis of the 30 papers from IEEE, the Institute of Navigation (ION), and Q1 journals, this review categorizes and evaluates different mitigation strategies, compares their effectiveness against various attack types, and identifies emerging trends and future research directions. The paper includes detailed tables, graphs, and visualizations to facilitate understanding of the complex landscape of GNSS security. The findings indicate that while traditional signal processing techniques remain valuable, machine learning approaches are increasingly demonstrating superior performance in detecting and mitigating sophisticated attacks, suggesting a promising direction for future research and development in GNSS security.
dc.description.notification©2025 IEEE
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|
dc.format.contentfi=kokoteksti|en=fulltext|
dc.format.extent9
dc.identifier.isbn979-8-3315-3562-9
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19081
dc.identifier.urnURN:NBN:fi-fe20251009100602
dc.language.isoeng
dc.publisherIEEE
dc.relation.conferenceInternational Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)
dc.relation.doi10.1109/acdsa65407.2025.11165996
dc.relation.isbn979-8-3315-3563-6
dc.relation.ispartof2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)
dc.relation.urlhttps://doi.org/10.1109/ACDSA65407.2025.11165996
dc.subjectGNSS; Spoofing; Jamming; Cybersecurity; Wireless Communications; Machine Learning; Deep Learning
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|
dc.titleGNSS Spoofing and Jamming Mitigation : A Comprehensive Review
dc.type.okmfi=A4 Artikkeli konferenssijulkaisussa|en=A4 Peer-reviewed article in conference proceeding|sv=A4 Artikel i en konferenspublikation|
dc.type.publicationarticle
dc.type.versionacceptedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Noah_Elmusrati_2025.pdf
Size:
450.11 KB
Format:
Adobe Portable Document Format

Kokoelmat