Utilizing ensemble learning for detecting multi-modal fake news

annif.suggestionsfake news|social media|machine learning|news|deep learning|digital media|media|Pakistan|disinformation|fake media|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p37799|http://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p13915|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p5575|http://www.yso.fi/onto/yso/p2445|http://www.yso.fi/onto/yso/p105965|http://www.yso.fi/onto/yso/p29444|http://www.yso.fi/onto/yso/p37810en
dc.contributor.authorLuqman, Muhammad
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorRamay, Waheed Yousuf
dc.contributor.authorSaeed, Malik Khizar
dc.contributor.authorAhmad, Majid Bashir
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-08-16T11:53:39Z
dc.date.accessioned2025-06-25T13:47:49Z
dc.date.available2024-08-16T11:53:39Z
dc.date.issued2024-01-23
dc.description.abstractThe spread of fake news has become a critical problem in recent years due extensive use of social media platforms. False stories can go viral quickly, reaching millions of people before they can be mocked, i.e., a false story claiming that a celebrity has died when he/she is still alive. Therefore, detecting fake news is essential for maintaining the integrity of information and controlling misinformation, social and political polarization, media ethics, and security threats. From this perspective, we propose an ensemble learning-based detection of multi-modal fake news. First, it exploits a publicly available dataset Fakeddit consisting of over 1 million samples of fake news. Next, it leverages Natural Language Processing (NLP) techniques for preprocessing textual information of news. Then, it gauges the sentiment from the text of each news. After that, it generates embeddings for text and images of the corresponding news by leveraging Visual Bidirectional Encoder Representations from Transformers (V-BERT), respectively. Finally, it passes the embeddings to the deep learning ensemble model for training and testing. The 10-fold evaluation technique is used to check the performance of the proposed approach. The evaluation results are significant and outperform the state-of-the-art approaches with the performance improvement of 12.57%, 9.70%, 18.15%, 12.58%, 0.10, and 3.07 in accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), and Odds Ratio (OR), respectively.-
dc.description.notification© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid21351
dc.identifier.oldhandle10024/17973
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2760
dc.identifier.urnURN:NBN:fi-fe2024081665315-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2024.3357661-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2024.3357661-
dc.relation.volume12-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001161093100001-
dc.source.identifierScopus:85183642580-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17973
dc.subjectEnsemble learning-
dc.subjectconvolutional neural network-
dc.subjectmulti-modal fake news-
dc.subjectclassification-
dc.subjectboosted CNN-
dc.subjectbagged CNN-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleUtilizing ensemble learning for detecting multi-modal fake news-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Luqman_Faheem_Ramay_Saeed_Ahmad_2024.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat