News-based sentiment and bitcoin volatility
annif.suggestions | news|volatility (societal properties)|news reportage|journalism|emotions|social media|security market|media|yield|Bitcoin|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p13915|http://www.yso.fi/onto/yso/p10771|http://www.yso.fi/onto/yso/p21431|http://www.yso.fi/onto/yso/p1161|http://www.yso.fi/onto/yso/p3485|http://www.yso.fi/onto/yso/p20774|http://www.yso.fi/onto/yso/p12456|http://www.yso.fi/onto/yso/p2445|http://www.yso.fi/onto/yso/p4629|http://www.yso.fi/onto/yso/p39380 | en |
dc.contributor.author | Sapkota, Niranjan | |
dc.contributor.department | Innolab | - |
dc.contributor.faculty | fi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance| | - |
dc.contributor.orcid | https://orcid.org/0000-0002-6549-8685 | - |
dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
dc.date.accessioned | 2023-02-07T13:28:24Z | |
dc.date.accessioned | 2025-06-25T12:26:20Z | |
dc.date.available | 2023-02-07T13:28:24Z | |
dc.date.issued | 2022-07 | |
dc.description.abstract | In this work, I studied whether news media sentiments have an impact on Bitcoin volatility. In doing so, I applied three different range-based volatility estimates along with two different sentiments, namely psychological sentiments and financial sentiments, incorporating four various sentiment dictionaries. By analyzing 17,490 news coverages by 91 major English-language newspapers listed in the LexisNexis database from around the globe from January 2012 until August 2021, I found news media sentiments to play a significant role in Bitcoin volatility. Following the heterogeneous autoregressive model for realized volatility (HAR-RV)—which uses the heterogeneous market idea to create a simple additive volatility model at different scales to learn which factor is influencing the time series—along with news sentiments as explanatory variables, showed a better fit and higher forecasting accuracy. Furthermore, I also found that psychological sentiments have medium-term and financial sentiments have long-term effects on Bitcoin volatility. Moreover, the National Research Council Emotion Lexicon showed the main emotional drivers of Bitcoin volatility to be anticipation and trust. | - |
dc.description.notification | © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). | - |
dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
dc.format.bitstream | true | |
dc.format.content | fi=kokoteksti|en=fulltext| | - |
dc.format.extent | 21 | - |
dc.identifier.olddbid | 17717 | |
dc.identifier.oldhandle | 10024/15172 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/233 | |
dc.identifier.urn | URN:NBN:fi-fe2023020726187 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier | - |
dc.relation.doi | 10.1016/j.irfa.2022.102183 | - |
dc.relation.ispartofjournal | International Review of Financial Analysis | - |
dc.relation.issn | 1873-8079 | - |
dc.relation.issn | 1057-5219 | - |
dc.relation.url | https://doi.org/10.1016/j.irfa.2022.102183 | - |
dc.relation.volume | 82 | - |
dc.rights | CC BY 4.0 | - |
dc.source.identifier | WOS:000830211900020 | - |
dc.source.identifier | Scopus:85129231493 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/15172 | |
dc.subject | Natural language processing | - |
dc.subject | HAR-RV (heterogeneous autoregressive realized volatility) | - |
dc.subject | News sentiments | - |
dc.subject | Range-based volatility | - |
dc.subject.discipline | fi=Laskentatoimi ja rahoitus|en=Accounting and Finance| | - |
dc.subject.yso | Bitcoin | - |
dc.title | News-based sentiment and bitcoin volatility | - |
dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
dc.type.publication | article | - |
dc.type.version | publishedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Sapkota_2022.pdf
- Size:
- 9.37 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli