Portfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques
annif.suggestions | machine learning|portfolios|securities portfolios|optimisation|security market|artificial intelligence|deep learning|investments (economics)|risk management|risks|en | en |
annif.suggestions.links | http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8330|http://www.yso.fi/onto/yso/p17562|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p12456|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p4319|http://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p11099 | en |
dc.contributor.author | Lönnrot, Pekka | |
dc.contributor.faculty | fi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance| | - |
dc.date.accessioned | 2025-01-17T13:39:27Z | |
dc.date.accessioned | 2025-06-25T20:04:43Z | |
dc.date.available | 2025-01-17T13:39:27Z | |
dc.date.issued | 2025-01-16 | |
dc.description.abstract | This thesis study the use of artificial intelligence (AI) in portfolio optimization, by evaluating and comparing AI with traditional methods such as Modern Portfolio Theory and Capital Asset Pricing Model. Advanced machine learning techniques such as deep learning, reinforcement learning and natural language processing which comprise AI bring several possibilities to ad- dress this weakness of traditional models in dynamic and volatile financial environments. This paper evaluates the use of AI in enhancing risk-adjusted returns and market agility before de- fining its challenges such as computational burden and interpretability. Our key observations describe situations where AI approaches outperform traditional methods, offering insights into possible future uses in asset management and field trends. | - |
dc.format.bitstream | true | |
dc.format.extent | 40 | - |
dc.identifier.olddbid | 22374 | |
dc.identifier.oldhandle | 10024/18674 | |
dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/16012 | |
dc.identifier.urn | URN:NBN:fi-fe202501164082 | - |
dc.language.iso | fin | - |
dc.rights | CC BY 4.0 | - |
dc.source.identifier | https://osuva.uwasa.fi/handle/10024/18674 | |
dc.subject.degreeprogramme | fi=Kauppatieteiden kandidaattiohjelma|en=Bachelor Programme in Business Studies| | - |
dc.subject.discipline | fi=Laskentatoimi ja rahoitus|en=Accounting and Finance| | - |
dc.subject.yso | machine learning | - |
dc.subject.yso | artificial intelligence | - |
dc.subject.yso | deep learning | - |
dc.title | Portfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques | - |
dc.type.ontasot | fi=Kandidaatintutkielma|en=Bachelor's thesis|sv=Kandidatarbete| | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Portfolio optimization with AI Evaluating Performance Beyond Traditional Techniques.pdf
- Size:
- 720.25 KB
- Format:
- Adobe Portable Document Format
- Description:
- Portfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques