Portfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques

annif.suggestionsmachine learning|portfolios|securities portfolios|optimisation|security market|artificial intelligence|deep learning|investments (economics)|risk management|risks|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p8330|http://www.yso.fi/onto/yso/p17562|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p12456|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p4319|http://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p11099en
dc.contributor.authorLönnrot, Pekka
dc.contributor.facultyfi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance|-
dc.date.accessioned2025-01-17T13:39:27Z
dc.date.accessioned2025-06-25T20:04:43Z
dc.date.available2025-01-17T13:39:27Z
dc.date.issued2025-01-16
dc.description.abstractThis thesis study the use of artificial intelligence (AI) in portfolio optimization, by evaluating and comparing AI with traditional methods such as Modern Portfolio Theory and Capital Asset Pricing Model. Advanced machine learning techniques such as deep learning, reinforcement learning and natural language processing which comprise AI bring several possibilities to ad- dress this weakness of traditional models in dynamic and volatile financial environments. This paper evaluates the use of AI in enhancing risk-adjusted returns and market agility before de- fining its challenges such as computational burden and interpretability. Our key observations describe situations where AI approaches outperform traditional methods, offering insights into possible future uses in asset management and field trends.-
dc.format.bitstreamtrue
dc.format.extent40-
dc.identifier.olddbid22374
dc.identifier.oldhandle10024/18674
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/16012
dc.identifier.urnURN:NBN:fi-fe202501164082-
dc.language.isofin-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18674
dc.subject.degreeprogrammefi=Kauppatieteiden kandidaattiohjelma|en=Bachelor Programme in Business Studies|-
dc.subject.disciplinefi=Laskentatoimi ja rahoitus|en=Accounting and Finance|-
dc.subject.ysomachine learning-
dc.subject.ysoartificial intelligence-
dc.subject.ysodeep learning-
dc.titlePortfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques-
dc.type.ontasotfi=Kandidaatintutkielma|en=Bachelor's thesis|sv=Kandidatarbete|-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Portfolio optimization with AI Evaluating Performance Beyond Traditional Techniques.pdf
Size:
720.25 KB
Format:
Adobe Portable Document Format
Description:
Portfolio optimization with AI: Evaluating Performance Beyond Traditional Techniques