Leveraging Generative Artificial Intelligence to Enhance Carbon Performance in Supply Chains Through Green Product Innovation and End-of-Life Product Management: AI-Driven Carbon Performance

dc.contributor.authorShariq, Syed Muhammad
dc.contributor.authorSperka, Roman
dc.contributor.authorShamim, Saqib
dc.contributor.authorAli, Hassan
dc.contributor.departmentInnoLabfi
dc.contributor.departmentInnoLaben
dc.date.accessioned2025-12-11T10:42:10Z
dc.date.issued2025
dc.description.abstractThis study illustrates how organizations reconcile their information processing capabilities with uncertainty within the supply chain (SC) through generative artificial intelligence (GAI) to achieve carbon performance (CP). A quantitative research methodology is applied, and 155 responses from manufacturing firms are analyzed through structural equation modeling (SEM) for hypothesis testing. The findings suggest that GAI for process automation and cognitive engagement has a positive influence on business intelligence (BI), whereas end-of-life (EOL) product management mediates the relationship between green product innovation (GPI) and CP. This study contributes to the SC context, focusing on GAI and BI in mitigating uncertainties within SCs to foster GPI and improve CP. This study highlights actionable frameworks for leveraging digital technologies in sustainable SCs by addressing technological challenges and integrating green innovation practices.en
dc.description.notification© 2025 The Author(s). Business Strategy and the Environment published by ERP Environment and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.description.reviewstatusvertaisarvioitufi
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/19476
dc.identifier.urnURN:NBN:fi-fe20251211117855
dc.language.isoen
dc.publisherJohn Wiley & Sons
dc.publisher.countryUNITED KINGDOM
dc.relation.doihttps://doi.org/10.1002/bse.70384
dc.relation.ispartofjournalBusiness strategy and the environment
dc.relation.issn1099-0836
dc.relation.issn0964-4733
dc.relation.issn0964-4733
dc.relation.urlhttps://doi.org/10.1002/bse.70384
dc.relation.urlhttps://urn.fi/URN:NBN:fi-fe20251211117855
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.source.identifier2911e875-b374-4105-b8e8-b83ec7d2fa3a
dc.source.metadataSoleCRIS
dc.subjectbusiness intelligence
dc.subjectcarbon performance
dc.subjectend-of-life product management
dc.subjectgenerative artificial intelligence
dc.subjectgreen product innovation
dc.subjectorganizational information processing theory
dc.subject.disciplineInnoLaben
dc.subject.disciplineInnoLabfi
dc.titleLeveraging Generative Artificial Intelligence to Enhance Carbon Performance in Supply Chains Through Green Product Innovation and End-of-Life Product Management: AI-Driven Carbon Performance
dc.type.okmA1 Journal article (peer-reviewed)en
dc.type.okmA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä (vertaisarvioitu)fi
dc.type.publicationarticle
dc.type.versionpublishedVersion

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
nbnfi-fe20251211117855.pdf
Size:
716.47 KB
Format:
Adobe Portable Document Format

Kokoelmat