Application of machine learning algorithm in the sheet metal industry : an exploratory case study

annif.suggestionsmachine learning|artificial intelligence|algorithms|machine industry|sheet metal|innovations|learning|industry|enterprises|technology|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p6212|http://www.yso.fi/onto/yso/p9548|http://www.yso.fi/onto/yso/p7903|http://www.yso.fi/onto/yso/p2945|http://www.yso.fi/onto/yso/p998|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p2339en
dc.contributor.authorShamsuzzoha, Ahm
dc.contributor.authorKankaanpää, Timo
dc.contributor.authorNguyen, Huy
dc.contributor.authorNguyen, Hoang
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-4219-0688-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-09-06T11:03:10Z
dc.date.accessioned2025-06-25T13:17:47Z
dc.date.available2021-09-06T11:03:10Z
dc.date.issued2021-09-03
dc.description.abstractThis study solved a practical problem in a case in the sheet metal industry using machine learning and deep learning algorithms. The problem in the case company was related to detecting the minimum gaps between components, which were produced after the punching operation of a metal sheet. Due to the narrow gaps between the components, an automated sheer machine could not grip the rest of the sheet skeleton properly after the punching operation. This resulted in some of the scraped sheet on the worktable being left behind, which needed a human operator to intervene. This caused an extra trigger to the production line that resulted in a break in production. To solve this critical problem, the relevant images of the components and the gaps between them were analyzed using machine learning and deep learning techniques. The outcome of this study contributed to eliminating the production bottleneck by optimizing the gaps between the punched components. This optimization process facilitated the easy and safe movement of the gripper machine and contributed to minimizing the sheet waste.-
dc.description.notification© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent20-
dc.format.pagerange1-20-
dc.identifier.olddbid14835
dc.identifier.oldhandle10024/13053
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1874
dc.identifier.urnURN:NBN:fi-fe2021090645257-
dc.language.isoeng-
dc.publisherTaylor and Francis-
dc.relation.doi10.1080/0951192X.2021.1972469-
dc.relation.ispartofjournalInternational Journal of Computer Integrated Manufacturing-
dc.relation.issn1362-3052-
dc.relation.issn0951-192X-
dc.relation.urlhttps://doi.org/10.1080/0951192X.2021.1972469-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13053
dc.subjectdeep learning-
dc.subjectdetection of gaps-
dc.subjectsheet metal industry-
dc.subjectcase study-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.subject.ysomachine learning-
dc.titleApplication of machine learning algorithm in the sheet metal industry : an exploratory case study-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Shamsuzzoha_Kankaanpaa_Nguyen_Nguyen_2021.pdf
Size:
7.06 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat