An ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling

annif.suggestionswind energy|wind|renewable energy sources|People's Republic of China|wind power stations|production of electricity|forecasts|wind turbines|machine learning|modelling (creation related to information)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p7125|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p104984|http://www.yso.fi/onto/yso/p6952|http://www.yso.fi/onto/yso/p5561|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p28964|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p3533en
dc.contributor.authorZhen, Zhao
dc.contributor.authorQiu, Gang
dc.contributor.authorMei, Shengwei
dc.contributor.authorWang, Fei
dc.contributor.authorZhang, Xuemin
dc.contributor.authorYin, Rui
dc.contributor.authorLi, Yu
dc.contributor.authorOsorio, Gerardo J.
dc.contributor.authorShafie-khah, Miadreza
dc.contributor.authorCatalao, Joao P.S.
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-1691-5355-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-02-23T06:51:25Z
dc.date.accessioned2025-06-25T12:23:18Z
dc.date.available2024-02-01T23:00:09Z
dc.date.issued2022-02-01
dc.description.abstractThe forecast of wind speed is prerequisite for wind power prediction, which is one of the most effective means of promoting wind power absorption. However, when modeling for wind speed sequences with different fluctuations, most existing researches ignore the influence of time scale of wind speed fluctuation period, let alone the low compatibility between training and testing samples that severely limit the training performance of forecasting model. To improve the accuracy of wind speed and wind power forecasting, an ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling is proposed in this paper. First, a series of wind processes are divided from the historical wind speed sequence according to the natural variation characteristics of wind speed. Second, we divide all the wind processes into two patterns based on their time scale, and an SVC model with input features extracted from meteorological data is built to identify the time scale of the current wind process. Third, for a specifically identified wind process, the complex network algorithm is applied in data screening to select high compatible training samples to train the forecast model dynamically for current input. Simulation indicates that the proposed approach presents higher accuracy than benchmark models using the same forecasting algorithms but without considering the time scale and data screening.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-02-01
dc.embargo.terms2024-02-01
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent13-
dc.identifier.olddbid17813
dc.identifier.oldhandle10024/15278
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/149
dc.identifier.urnURN:NBN:fi-fe2023022328369-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.ijepes.2021.107502-
dc.relation.funderNational Natural Science Foundation of China-
dc.relation.funderScience & Technology Project of State Grid Xinjiang Electric Power Co., Ltd, China-
dc.relation.funderManagement consulting project of State Grid Corporation of China-
dc.relation.funderFundamental Research Funds for the Central Universities-
dc.relation.grantnumber52007092-
dc.relation.grantnumberSGXJ0000TKJS2100234-
dc.relation.grantnumber8104bb190074-
dc.relation.grantnumber2019MS084-
dc.relation.ispartofjournalInternational Journal of Electrical Power & Energy Systems-
dc.relation.issn1879-3517-
dc.relation.issn0142-0615-
dc.relation.urlhttps://doi.org/10.1016/j.ijepes.2021.107502-
dc.relation.volume135-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000705982100012-
dc.source.identifierScopus:85113783009-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/15278
dc.subjectComplex network-
dc.subjectPattern recognition-
dc.subjectTime scale distribution function-
dc.subjectWind process-
dc.subjectWind speed forecast-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleAn ultra-short-term wind speed forecasting model based on time scale recognition and dynamic adaptive modeling-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Zhen_Qiu_Mei_Wang_Zhang_Yin_Li_Osorio_Shafie-khah_Catalao_2022.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat