Analysis of supply chain resilience drivers in oil and gas industries during the COVID-19 pandemic using an integrated approach

annif.suggestionssupply chains|logistics|pandemics|resilience|COVID-19|materials economy|motor vehicle drivers|transport|risk management|clothing industry|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19415|http://www.yso.fi/onto/yso/p9140|http://www.yso.fi/onto/yso/p10121|http://www.yso.fi/onto/yso/p25253|http://www.yso.fi/onto/yso/p38829|http://www.yso.fi/onto/yso/p5362|http://www.yso.fi/onto/yso/p3004|http://www.yso.fi/onto/yso/p7285|http://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p4451en
dc.contributor.authorPiya, Sujan
dc.contributor.authorShamsuzzoha, Ahm
dc.contributor.authorKhadem, Mohammad
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0002-4219-0688-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2023-01-09T11:11:16Z
dc.date.accessioned2025-06-25T13:41:59Z
dc.date.available2024-04-06T22:00:06Z
dc.date.issued2022-04-06
dc.description.abstractThe COVID-19 pandemic has significantly affected the supply chains (SCs) of many industries, including the oil and gas (O&G) industry. This study aims to identify and analyze the drivers that affect the resilience level of the O&G SC under the COVID-19 pandemic. The analysis helps to understand the driving intensity of one driver over those of others as well as drivers with the highest driving power to achieve resilience. Through an extensive literature review and an overview of experts’ opinions, the study identified fourteen supply chain resilience (SCR) drivers of the O&G industry. These drivers were analyzed using the integrated fuzzy interpretive structural modeling (ISM) and decision-making trial and evaluation laboratory (DEMATEL) approaches. The analysis shows that the major drivers of SCR are government support and security. These two drivers help to achieve other drivers of SCR, such as collaboration and information sharing, which, in turn, influence innovation, trust, and visibility among SC partners. Two more drivers, robustness and agility, are also essential drivers of SCR. However, rather than influencing other drivers for their achievement, robustness and agility are influenced by others. The results show that collaboration has the highest overall driving intensity and agility has the highest intensity of being influenced by other drivers.-
dc.description.notification©2022 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2024-04-06
dc.embargo.terms2024-04-06
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid17539
dc.identifier.oldhandle10024/14990
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2575
dc.identifier.urnURN:NBN:fi-fe202301091866-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.asoc.2022.108756-
dc.relation.funderSultan Qaboos University-
dc.relation.grantnumberIG/ENG/MIED/21/03-
dc.relation.ispartofjournalApplied Soft Computing-
dc.relation.issn1872-9681-
dc.relation.issn1568-4946-
dc.relation.urlhttps://doi.org/10.1016/j.asoc.2022.108756-
dc.relation.volume121-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierWOS:000793560500001-
dc.source.identifierScopus:85127524524-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14990
dc.subjectFuzzy logic-
dc.subjectISM-DEMATEL-
dc.subjectOil and gas industry-
dc.subjectResilience drivers-
dc.subjectSupply chain resilience-
dc.subject.disciplinefi=Tuotantotalous|en=Industrial Management|-
dc.subject.ysoCOVID-19-
dc.titleAnalysis of supply chain resilience drivers in oil and gas industries during the COVID-19 pandemic using an integrated approach-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Piya_Shamsuzzoha_Khadem_2022.pdf
Size:
810.3 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat