An efficient framework for short-term electricity price forecasting in deregulated power market

annif.suggestionselectricity market|prices|forecasts|electrical engineering|electricity|optimisation|citations|machine learning|algorithms|electrical power networks|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p16837|http://www.yso.fi/onto/yso/p750|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p5828|http://www.yso.fi/onto/yso/p13477|http://www.yso.fi/onto/yso/p18305|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p7753en
dc.contributor.authorPourdaryaei, Alireza
dc.contributor.authorMohammadi, Mohammad
dc.contributor.authorMuhammad, MunirAzam
dc.contributor.authorIslam, Junaid Bin Fakhrul
dc.contributor.authorKarimi, Mazaher
dc.contributor.authorShahriari, Amidaddin
dc.contributor.departmentVebic-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-2145-4936-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-11-23T05:46:32Z
dc.date.accessioned2025-06-25T13:19:55Z
dc.date.available2021-11-23T05:46:32Z
dc.date.issued2021-11-18
dc.description.abstractIt is widely acknowledged that electricity price forecasting become an essential factor in operational activities, planning, and scheduling for the participant in the price-setting market, nowadays. Nevertheless, electricity price became a complex signal due to its non-stationary, non-linearity, and time-variant behavior. Consequently, a variety of artificial intelligence techniques are proposed to provide an efficient method for short-term electricity price forecasting. BSA as the recent augmentation of optimization technique, yield the potential of searching a closed-form solution in mathematical modeling with a higher probability, obviating the necessity to comprehend the correlations between variables. Concurrently, this study also developed a feature selection technique, to select the input variables subsets that have a substantial implication on forecasting of electricity price, based on a combination of mutual information (MI) and SVM. For the verification of simulation results, actual data sets from the Ontario energy market in the year 2020 covering various weather seasons are acquired. Finally, the obtained results demonstrate the feasibility of the proposed strategy through improved preciseness in comparison with the distinctive methods.-
dc.description.notification©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/-
dc.description.notificationThis research has been supported by University of Vaasa under Profi4/WP2 project with the financial support provided by the Academy of Finland.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent18-
dc.format.pagerange1-18-
dc.identifier.olddbid15059
dc.identifier.oldhandle10024/13182
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1940
dc.identifier.urnURN:NBN:fi-fe2021112356429-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/ACCESS.2021.3129449-
dc.relation.funderthe Academy of Finland-
dc.relation.ispartofjournalIEEE Access-
dc.relation.issn2169-3536-
dc.relation.urlhttps://doi.org/10.1109/ACCESS.2021.3129449-
dc.rightsCC BY 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/13182
dc.subjectBacktracking search Algorithm-
dc.subjectElectricity Price Forecasting-
dc.subjectFeature Selection-
dc.subjectSupport Vector Machine-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.subject.ysoelectricity market-
dc.titleAn efficient framework for short-term electricity price forecasting in deregulated power market-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Pourdaryaei_Mohammadi_Muhammad_Islam_Karimi_Shahriari_2021.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat