Determinants of electronic waste generation in Bitcoin network : Evidence from the machine learning approach

annif.suggestionselectronic money|machine learning|waste electronic and electrical equipment|algorithms|means of payment|wastes|artificial intelligence|data security|payment systems|econometrics|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3653|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p21194|http://www.yso.fi/onto/yso/p14524|http://www.yso.fi/onto/yso/p8753|http://www.yso.fi/onto/yso/p2360|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p5479|http://www.yso.fi/onto/yso/p7584|http://www.yso.fi/onto/yso/p13480en
dc.contributor.authorJana, Rabin K.
dc.contributor.authorGhosh, Indranil
dc.contributor.authorDas, Debojyoti
dc.contributor.authorDutta, Anupam
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Laskentatoimen ja rahoituksen yksikkö|en=School of Accounting and Finance|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2021-08-17T12:35:04Z
dc.date.accessioned2025-06-25T13:19:09Z
dc.date.available2023-08-15T22:00:05Z
dc.date.issued2021-08-15
dc.description.abstractElectronic waste is generating in the Bitcoin network at an alarming rate. This study identifies the determinants of electronic waste generation in the Bitcoin network using machine learning algorithms. We model the evolutionary patterns of electronic waste and carry out a predictive analytics exercise to achieve this objective. The Maximal Information Coefficient (MIC) and Generalized Mean Information Coefficient (GMIC) help to study the association structure. A series of six state-of-the-art machine learning algorithms - Gradient Boosting (GB), Regularized Random Forest (RRF), Bagging-Multiple Adaptive Regression Splines (BM), Hybrid Neuro Fuzzy Inference Systems (HYFIS), Self-Organizing Map (SOM), and Quantile Regression Neural Network (QRNN) are used separately for predictive modeling. We compare the predictive performance of all the algorithms. Statistically, the GB is a superior model followed by RRF. The performance of SOM is the least accurate. Our findings reveal that the blockchain's size, energy consumption, and the historical number of Bitcoin are the most determinants of electronic waste generation in the Bitcoin network. The overall findings bring out exciting insights into practical relevance for effectively curbing electronic waste accumulation.-
dc.description.notification©2021 Elsevier. This manuscript version is made available under the Creative Commons Attribution–NonCommercial–NoDerivatives 4.0 International (CC BY–NC–ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2023-08-15
dc.embargo.terms2023-08-15
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid14770
dc.identifier.oldhandle10024/12999
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1914
dc.identifier.urnURN:NBN:fi-fe2021081743486-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.doi10.1016/j.techfore.2021.121101-
dc.relation.ispartofjournalTechnological Forecasting and Social Change-
dc.relation.issn1873-5509-
dc.relation.issn0040-1625-
dc.relation.urlhttps://doi.org/10.1016/j.techfore.2021.121101-
dc.relation.volume173-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/12999
dc.subjectBitcoin-
dc.subjectblockchain-
dc.subjectElectronic waste-
dc.subjectNon-parametric statistics-
dc.subject.disciplinefi=Laskentatoimi ja rahoitus|en=Accounting and Finance|-
dc.subject.ysomachine learning-
dc.titleDeterminants of electronic waste generation in Bitcoin network : Evidence from the machine learning approach-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Jana_Ghosh_Das_Dutta_2021.pdf
Size:
600.38 KB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat