Machine learning autoencoder-based parameters prediction for solar power generation systems in smart grid

annif.suggestionsrenewable energy sources|machine learning|smart grids|electrical power networks|solar energy|artificial intelligence|electrical engineering|deep learning|energy technology|energy production (process industry)|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p7753|http://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p2384en
dc.contributor.authorZafar, Ahsan
dc.contributor.authorChe, Yanbo
dc.contributor.authorFaheem, Muhammad
dc.contributor.authorAbubakar, Muhammad
dc.contributor.authorAli, Shujaat
dc.contributor.authorBhutta, Muhammad Shoaib
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0003-4628-4486-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-09-09T09:32:09Z
dc.date.accessioned2025-06-25T13:50:52Z
dc.date.available2024-09-09T09:32:09Z
dc.date.issued2024-01-03
dc.description.abstractDuring the fourth energy revolution, artificial intelligence implementation is necessary in all fields of technology to meet the increasing energy demands and address the diminishing fossil fuel reserves, necessitating the shift towards smart grids. The authors focus on predicting parameters accurately to minimise loss and improve power generation capacity in smart grids, given that accurate parameter prediction is essential for traditional power grid stations converting to smart grids. The authors employ an artificial intelligence-based machine learning model, namely the long short-term memory, to predict parameters of a solar power plant. After analysing the results obtained from the long short-term memory model in graphical visualisation, the model is further improved using two different techniques namely, a convolutional neural network-long short-term memory and the authors proposed an autoencoder long short-term memory. Comparing the results of these models, the study finds that autoencoder long short-term memory outperforms the convolutional neural network-long short-term memory as well as simple long short-term memory. Thus, the use of artificial intelligence in this study substantially enhances the precision of parameter prediction by augmenting the performance of rudimentary machine learning models, thereby facilitating the attainment of a resilient and resourceful power system that overcomes power losses and ameliorates production capacity in the context of Smart Grids.-
dc.description.notification© 2024 The Authors. IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent23-
dc.format.pagerange328-350-
dc.identifier.olddbid21459
dc.identifier.oldhandle10024/18057
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/2850
dc.identifier.urnURN:NBN:fi-fe2024090969869-
dc.language.isoeng-
dc.publisherThe Institution of Engineering and Technology-
dc.publisherJohn Wiley & Sons-
dc.relation.doi10.1049/stg2.12153-
dc.relation.ispartofjournalIET Smart Grid-
dc.relation.issn2515-2947-
dc.relation.issue3-
dc.relation.urlhttps://doi.org/10.1049/stg2.12153-
dc.relation.volume7-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:001135518100001-
dc.source.identifierScopus:85181230743-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/18057
dc.subjectpower grids-
dc.subjectpower system management-
dc.subjectpower system planning-
dc.subjectsolar power stations-
dc.subject.disciplinefi=Tietotekniikka|en=Computer Science|-
dc.titleMachine learning autoencoder-based parameters prediction for solar power generation systems in smart grid-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Zafar_Che_Faheem_Abubakar_Ali_Bhutta_2024.pdf
Size:
3.76 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat