A Novel AI-Based Thermal Conductivity Predictor in the Insulation Performance Analysis of Signal-Transmissive Wall

annif.suggestionsheat conduction|energy consumption (energy technology)|heat insulation|energy efficiency|buildings|heat transfer|measurement|measuring methods|energy technology|mobile communication networks|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19905|http://www.yso.fi/onto/yso/p2382|http://www.yso.fi/onto/yso/p19502|http://www.yso.fi/onto/yso/p8328|http://www.yso.fi/onto/yso/p1786|http://www.yso.fi/onto/yso/p17700|http://www.yso.fi/onto/yso/p4794|http://www.yso.fi/onto/yso/p20083|http://www.yso.fi/onto/yso/p10947|http://www.yso.fi/onto/yso/p12758en
dc.contributor.authorWang, Xiaolei
dc.contributor.authorLü, Xiaoshu
dc.contributor.authorVähä-Savo, Lauri
dc.contributor.authorHaneda, Katsuyuki
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0009-0007-3393-997X-
dc.contributor.orcidhttps://orcid.org/0000-0002-1928-8580-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-02-23T08:55:39Z
dc.date.accessioned2025-06-25T13:12:12Z
dc.date.available2024-02-23T08:55:39Z
dc.date.issued2023-05-19
dc.description.abstractIt is well known that thermal conductivity measurement is a challenging task, due to the weaknesses of the traditional methods, such as the high cost, complex data analysis, and limitations of sample size. Nowadays, the requirement of quality of life and tightening energy efficiency regulations of buildings promote the demand for new construction materials. However, limited by the size and inhomogeneous structure, the thermal conductivity measurement of wall samples becomes a demanding topic. Additionally, we find the thermal parameter values of the samples measured in the laboratory are different from those obtained by theoretical computation. In this paper, a novel signal-transmissive wall is designed to provide the problem solving of signal connectivity in 5G. We further propose a new thermal conductivity predictor based on the Harmony Search (HS) algorithm to estimate the thermal properties of laboratory-made wall samples. The advantages of our approach over the conventional methods are simplicity and robustness, which can be generalized to a wide range of solid samples in the laboratory measurement.-
dc.description.notification© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent16-
dc.identifier.olddbid19995
dc.identifier.oldhandle10024/16938
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1688
dc.identifier.urnURN:NBN:fi-fe202402238485-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.doi10.3390/en16104211-
dc.relation.funderAcademy of Finland-
dc.relation.grantnumber324023-
dc.relation.ispartofjournalEnergies-
dc.relation.issn1996-1073-
dc.relation.issue10-
dc.relation.urlhttps://doi.org/10.3390/en16104211-
dc.relation.volume16-
dc.rightsCC BY 4.0-
dc.source.identifierWOS:000997471200001-
dc.source.identifierScopus:85160622000-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/16938
dc.subjectArtificial intelligence-
dc.subjectThermal conductivity-
dc.subjectharmony search-
dc.subjectoptimization methods-
dc.subjectspecific heat-
dc.subject5G passive antenna system-
dc.subjectsandwich wall-
dc.subjectlarge sample measurement-
dc.subject.disciplinefi=Energiatekniikka|en=Energy Technology|-
dc.titleA Novel AI-Based Thermal Conductivity Predictor in the Insulation Performance Analysis of Signal-Transmissive Wall-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionpublishedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Wang_Lü_Vähä-Savo_Haneda_2023.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
Description:
Artikkeli

Kokoelmat