Interpretable machine learning model for prediction of overall survival in laryngeal cancer

annif.suggestionscancerous diseases|forecasts|machine learning|squamous cell carcinoma|throat cancer|deep learning|artificial intelligence|ear diseases|immunotherapy|oncology|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p678|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p27078|http://www.yso.fi/onto/yso/p15236|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p2616|http://www.yso.fi/onto/yso/p4105|http://www.yso.fi/onto/yso/p12660|http://www.yso.fi/onto/yso/p12865en
dc.contributor.authorAlabi, Rasheed Omobolaji
dc.contributor.authorAlmangush, Alhadi
dc.contributor.authorElmusrati, Mohammed
dc.contributor.authorLeivo, Ilmo
dc.contributor.authorMäkitie, Antti A.
dc.contributor.departmentDigital Economy-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-9304-6590-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-08-19T12:32:53Z
dc.date.accessioned2025-06-25T13:58:07Z
dc.date.available2025-01-27T23:00:05Z
dc.date.issued2024-01-27
dc.description.abstractBackground: The mortality rates of laryngeal squamous cell carcinoma cancer (LSCC) have not significantly decreased in the last decades. Objectives: We primarily aimed to compare the predictive performance of DeepTables with the state-of-the-art machine learning (ML) algorithms (Voting ensemble, Stack ensemble, and XGBoost) to stratify patients with LSCC into chance of overall survival (OS). In addition, we complemented the developed model by providing interpretability using both global and local model-agnostic techniques. Methods: A total of 2792 patients in the Surveillance, Epidemiology, and End Results (SEER) database diagnosed with LSCC were reviewed. The global model-agnostic interpretability was examined using SHapley Additive exPlanations (SHAP) technique. Likewise, individual interpretation of the prediction was made using Local Interpretable Model Agnostic Explanations (LIME). Results: The state-of-the-art ML ensemble algorithms outperformed DeepTables. Specifically, the examined ensemble algorithms showed comparable weighted area under receiving curve of 76.9, 76.8, and 76.1 with an accuracy of 71.2%, 70.2%, and 71.8%, respectively. The global methods of interpretability (SHAP) demonstrated that the age of the patient at diagnosis, N-stage, T-stage, tumor grade, and marital status are among the prominent parameters. Conclusions: A ML model for OS prediction may serve as an ancillary tool for treatment planning of LSCC patients.-
dc.description.notification©2024 Taylor and Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Acta Oto-Laryngologica on 27 Jan 2024, available online: https://doi.org/10.1080/00016489.2023.2301648-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.embargo.lift2025-01-27
dc.embargo.terms2025-01-27
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.identifier.olddbid21353
dc.identifier.oldhandle10024/17974
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/3093
dc.identifier.urnURN:NBN:fi-fe2024081965550-
dc.language.isoeng-
dc.publisherTaylor & Francis-
dc.relation.doi10.1080/00016489.2023.2301648-
dc.relation.funderThe Sigrid Jusélius Foundation-
dc.relation.funderState funding for the Helsinki University Hospital-
dc.relation.funderFinska Läkaresällskapet-
dc.relation.ispartofjournalActa Oto-laryngologica-
dc.relation.issn1651-2251-
dc.relation.issn0001-6489-
dc.relation.urlhttps://doi.org/10.1080/00016489.2023.2301648-
dc.source.identifierWOS:001150575300001-
dc.source.identifierScopus:85183912178-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17974
dc.subjectdeep learning-
dc.subjectDeepTables-
dc.subjectlaryngeal cancer-
dc.subjectlaryngeal squamous cell carcinoma-
dc.subjectoverall survival-
dc.subjectsEER-
dc.subjectstacked ensemble-
dc.subjectvoting ensemble-
dc.subjectXGBoost-
dc.subject.disciplinefi=Tietoliikennetekniikka|en=Telecommunications Engineering|-
dc.subject.ysomachine learning-
dc.titleInterpretable machine learning model for prediction of overall survival in laryngeal cancer-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Alabi_Almangush_Elmusrati_Leivo_Mäkitie_2024.pdf
Size:
796.56 KB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat