Wide-Area Composite Load Parameter Identification Based on Multi-Residual Deep Neural Network
| annif.suggestions | neural networks (information technology)|machine learning|deep learning|modelling (representation)|strains and stresses|measuring technology|parameters|smart grids|electrical engineering|networks (systems)|en | en |
| annif.suggestions.links | http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p39324|http://www.yso.fi/onto/yso/p3533|http://www.yso.fi/onto/yso/p17226|http://www.yso.fi/onto/yso/p5635|http://www.yso.fi/onto/yso/p1668|http://www.yso.fi/onto/yso/p29493|http://www.yso.fi/onto/yso/p1585|http://www.yso.fi/onto/yso/p5569 | en |
| dc.contributor.author | Afrasiabi, Shahabodin | |
| dc.contributor.author | Afrasiabi, Mousa | |
| dc.contributor.author | Jarrahi, Mohammad Amin | |
| dc.contributor.author | Mohammadi, Mohammad | |
| dc.contributor.author | Aghaei, Jamshid | |
| dc.contributor.author | Javadi, Mohammad Sadegh | |
| dc.contributor.author | Shafie-Khah, Miadreza | |
| dc.contributor.author | Catalão, João P. S. | |
| dc.contributor.faculty | fi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations| | - |
| dc.contributor.orcid | https://orcid.org/0000-0003-1691-5355 | - |
| dc.contributor.organization | fi=Vaasan yliopisto|en=University of Vaasa| | |
| dc.date.accessioned | 2023-09-29T06:05:48Z | |
| dc.date.accessioned | 2025-06-25T13:01:28Z | |
| dc.date.available | 2023-09-29T06:05:48Z | |
| dc.date.issued | 2023-09 | |
| dc.description.abstract | Accurate and practical load modeling plays a critical role in the power system studies including stability, control, and protection. Recently, wide-area measurement systems (WAMSs) are utilized to model the static and dynamic behavior of the load consumption pattern in real-time, simultaneously. In this article, a WAMS-based load modeling method is established based on a multi-residual deep learning structure. To do so, a comprehensive and efficient load model founded on combination of impedance–current–power and induction motor (IM) is constructed at the first step. Then, a deep learning-based framework is developed to understand the time-varying and complex behavior of the composite load model (CLM). To do so, a residual convolutional neural network (ResCNN) is developed to capture the spatial features of the load at different location of the large-scale power system. Then, gated recurrent unit (GRU) is used to fully understand the temporal features from highly variant time-domain signals. It is essential to provide a balance between fast and slow variant parameters. Thus, the designed structure is implemented in a parallel manner to fulfill the balance and moreover, weighted fusion method is used to estimate the parameters, as well. Consequently, an error-based loss function is reformulated to improve the training process as well as robustness in the noisy conditions. The numerical experiments on IEEE 68-bus and Iranian 95-bus systems verify the effectiveness and robustness of the proposed load modeling approach. Furthermore, a comparative study with some relevant methods demonstrates the superiority of the proposed structure. The obtained results in the worst-case scenario show error lower than 0.055% considering noisy condition and at least 50% improvement comparing the several state-of-art methods. | - |
| dc.description.notification | ©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. | - |
| dc.description.reviewstatus | fi=vertaisarvioitu|en=peerReviewed| | - |
| dc.format.bitstream | true | |
| dc.format.content | fi=kokoteksti|en=fulltext| | - |
| dc.format.extent | 11 | - |
| dc.format.pagerange | 6121-6131 | - |
| dc.identifier.olddbid | 19098 | |
| dc.identifier.oldhandle | 10024/16294 | |
| dc.identifier.uri | https://osuva.uwasa.fi/handle/11111/1361 | |
| dc.identifier.urn | URN:NBN:fi-fe20230929137806 | - |
| dc.language.iso | eng | - |
| dc.publisher | IEEE | - |
| dc.relation.doi | 10.1109/TNNLS.2021.3133350 | - |
| dc.relation.ispartofjournal | IEEE Transactions on Neural Networks and Learning Systems | - |
| dc.relation.issn | 2162-2388 | - |
| dc.relation.issn | 2162-237X | - |
| dc.relation.issue | 9 | - |
| dc.relation.url | https://doi.org/10.1109/TNNLS.2021.3133350 | - |
| dc.relation.volume | 34 | - |
| dc.source.identifier | Scopus:85122083575 | - |
| dc.source.identifier | https://osuva.uwasa.fi/handle/10024/16294 | |
| dc.subject | Composite load model (CLM) | - |
| dc.subject | gated recurrent unit (GRU) | - |
| dc.subject | pseudo-Huber loss function | - |
| dc.subject | residual convolutional neural network (ResCNN) | - |
| dc.subject.discipline | fi=Sähkötekniikka|en=Electrical Engineering| | - |
| dc.subject.yso | deep learning | - |
| dc.title | Wide-Area Composite Load Parameter Identification Based on Multi-Residual Deep Neural Network | - |
| dc.type.okm | fi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift| | - |
| dc.type.publication | article | - |
| dc.type.version | acceptedVersion | - |
Tiedostot
1 - 1 / 1
Ladataan...
- Name:
- Osuva_Afrasiabi_Afrasiabi_Jarrahi_Mohammadi_Aghaei_Javadi_Shafie-Khah_Catalão_2023.pdf
- Size:
- 2.64 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artikkeli
