Day-Ahead Parametric Probabilistic Forecasting of Wind and Solar Power Generation using Bounded Probability Distributions and Hybrid Neural Networks

annif.suggestionssolar energy|wind energy|copyright|renewable energy sources|solar wind|energy production (process industry)|forecasts|reuse|neural networks (information technology)|energy technology|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p19636|http://www.yso.fi/onto/yso/p6950|http://www.yso.fi/onto/yso/p2346|http://www.yso.fi/onto/yso/p20762|http://www.yso.fi/onto/yso/p12043|http://www.yso.fi/onto/yso/p2384|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p13211|http://www.yso.fi/onto/yso/p7292|http://www.yso.fi/onto/yso/p10947en
dc.contributor.authorKonstantinou, Theodoros
dc.contributor.authorHatziargyriou, Nikos
dc.contributor.departmentfi=Ei tutkimusalustaa|en=No platform|-
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.orcidhttps://orcid.org/0000-0001-5296-191X-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2024-03-27T08:41:58Z
dc.date.accessioned2025-06-25T13:13:59Z
dc.date.available2024-03-27T08:41:58Z
dc.date.issued2023-04-27
dc.description.abstractThe penetration of renewable energy sources in modern power systems increases at an impressive rate. Due to their intermittent and uncertain nature, it is important to forecast their generation including its uncertainty. In this article, an ensemble artificial neural network is applied for day ahead solar and wind power generation parametric probabilistic forecasting. The proposed architecture includes two components: a sub-models component and a Meta-Learner component. The first component includes an ensemble of artificial neural networks that have the ability to estimate the parameters of an underlying probability distribution. The Meta-Learner is responsible for grouping the training samples based on the estimated level of generation, through a classification-clustering process and use the output of the corresponding sub-models to calculate the final parametric probabilistic estimation. The proposed model is compared to both parametric and non-parametric state of the art probabilistic techniques for solar and wind power generation forecasting, exhibiting superior performance.-
dc.description.notification©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.description.reviewstatusfi=vertaisarvioitu|en=peerReviewed|-
dc.format.bitstreamtrue
dc.format.contentfi=kokoteksti|en=fulltext|-
dc.format.extent12-
dc.format.pagerange2109-2120-
dc.identifier.olddbid20205
dc.identifier.oldhandle10024/17080
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/1749
dc.identifier.urnURN:NBN:fi-fe2024032713274-
dc.language.isoeng-
dc.publisherIEEE-
dc.relation.doi10.1109/TSTE.2023.3270968-
dc.relation.ispartofjournalIEEE Transactions on Sustainable Energy-
dc.relation.issn1949-3037-
dc.relation.issn1949-3029-
dc.relation.issue4-
dc.relation.urlhttps://doi.org/10.1109/TSTE.2023.3270968-
dc.relation.volume14-
dc.source.identifierWOS:001072574400013-
dc.source.identifierScopus:85159720024-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/17080
dc.subjectArtificial neural networks-
dc.subjectensemble forecasting-
dc.subjectparametric probabilistic forecasting-
dc.subjectprobability density estimation-
dc.subject.disciplinefi=Sähkötekniikka|en=Electrical Engineering|-
dc.titleDay-Ahead Parametric Probabilistic Forecasting of Wind and Solar Power Generation using Bounded Probability Distributions and Hybrid Neural Networks-
dc.type.okmfi=A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä|en=A1 Peer-reviewed original journal article|sv=A1 Originalartikel i en vetenskaplig tidskrift|-
dc.type.publicationarticle-
dc.type.versionacceptedVersion-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Osuva_Konstantinou_Hatziargyriou_2023.pdf
Size:
16.94 MB
Format:
Adobe Portable Document Format
Description:
Article

Kokoelmat