Case Study on Utilizing Machine Learning in Corporate Default Risk Prediction : A practical Implementation to Credit Risk Management Process

annif.suggestionsrisk management|credits|risks|enterprises|credit risks|machine learning|finance|carts|logistics|forecasts|enen
annif.suggestionsrisk management|credits|enterprises|risks|credit risks|machine learning|finance|carts|forecasts|logistics|enen
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p6702|http://www.yso.fi/onto/yso/p11099|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p39106|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p1406|http://www.yso.fi/onto/yso/p26176|http://www.yso.fi/onto/yso/p9140|http://www.yso.fi/onto/yso/p3297en
annif.suggestions.linkshttp://www.yso.fi/onto/yso/p3134|http://www.yso.fi/onto/yso/p6702|http://www.yso.fi/onto/yso/p3128|http://www.yso.fi/onto/yso/p11099|http://www.yso.fi/onto/yso/p39106|http://www.yso.fi/onto/yso/p21846|http://www.yso.fi/onto/yso/p1406|http://www.yso.fi/onto/yso/p26176|http://www.yso.fi/onto/yso/p3297|http://www.yso.fi/onto/yso/p9140en
dc.contributor.authorLaulajainen, Mikko
dc.contributor.facultyfi=Tekniikan ja innovaatiojohtamisen yksikkö|en=School of Technology and Innovations|-
dc.contributor.organizationfi=Vaasan yliopisto|en=University of Vaasa|
dc.date.accessioned2022-06-03T12:47:33Z
dc.date.accessioned2025-06-25T17:30:09Z
dc.date.available2022-06-03T12:47:33Z
dc.date.issued2022-05-19
dc.description.abstractThe purpose of the case study is to create an in-house corporate default risk prediction model that outperforms the external corporate credit rating which the case company is currently using for this purpose. In addition, the study sets the framework for implementing the model into current system architecture and credit risk management process. The study consists of literature review and empirical analysis where the default prediction models are built and tested and the proposal for implementing the model into case company’s system architecture and processes is given. The data used in this study consists of historical financial figures & ratios, payment behaviour information and other background information of 2471 Finnish companies from period 2009-2017 of which 22,6% defaulted during this period. MissForest method was used in imputation of the missing values. The models used in this study are Multivariate Discriminant Analysis, Logistics Regression, Random Forest, CART, AdaBoost, Support Vector Machine and Neural Network. The dataset was split with 70/30 ratio to training and test set and 10-fold cross validation was used in training, feature selection and hyperparameter optimization for each model. Model performance was also tested over a two-year time horizon. The models’ performance was measured with ROC AUC & PR AUC and Brier Score. All the models overperformed the external credit rating with the selected metrics. The best performing model was the black box model Adaboost and the best performing white box model was the logistic regression with LASSO method used for the predictor variable selection.-
dc.format.bitstreamtrue
dc.format.extent127-
dc.identifier.olddbid16386
dc.identifier.oldhandle10024/14263
dc.identifier.urihttps://osuva.uwasa.fi/handle/11111/11461
dc.identifier.urnURN:NBN:fi-fe2022051936909-
dc.language.isoeng-
dc.rightsCC BY-NC-ND 4.0-
dc.source.identifierhttps://osuva.uwasa.fi/handle/10024/14263
dc.subject.degreeprogrammeMaster's Programme in Industrial Management-
dc.subject.disciplinefi=Tuotantotalous (kauppatieteet)|en=Industrial Management|-
dc.subject.ysorisk management-
dc.subject.ysocredit risks-
dc.subject.ysomachine learning-
dc.subject.ysoforecasts-
dc.titleCase Study on Utilizing Machine Learning in Corporate Default Risk Prediction : A practical Implementation to Credit Risk Management Process-
dc.type.ontasotfi=Pro gradu -tutkielma|en=Master's thesis|sv=Pro gradu -avhandling|-

Tiedostot

Näytetään 1 - 1 / 1
Ladataan...
Name:
Case Study on Utilizing Machine Learning in Corporate Default Risk Prediction.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format